什么叫VANOS,其工作原理是什么?

行程控制装置和可变凸轮轴控制装置(双

可以任意选择进气门关闭时刻。电子气门在很大程度上承担

了节气门的功能。为此需要使用一种全可变气门行程控制装

一、电子气门的结构宝马车电子气门的构成如图

进气门打开情况下进气量是通过调节气门行程来完成的,这

样就能确定最佳的气缸气量。

、伺服电动机伺服电动机又

称执行电动机,布置在凸轮轴上方。伺服电动机的蜗杆嵌入

安装在偏心轴上的蜗轮内。伺服电动机是一个典型闭环反馈

系统,减速齿轮组由电动机驱动,其终端(输出端)带动一

个线性的比例电位器作位置检测,该电位器把转角坐标转换

为一比例电压反馈给控制线路板,控制线路板将其与输入的

控制脉冲信号比较,产生纠正脉冲,并驱动电动机正向或反

向地转动,使齿轮组的输出位置与期望值相符,从而达到使

伺服电动机精确定位的目的。

、滚子式气门压杆滚子式气门压杆和中间推杆的接触面是

斜台,在斜台处进行的是滚动摩擦可减小机械损失,并且压

杆与推杆分为不同的等级,在同一个气缸上始终安装相同等

另外,附有各发动机专业术语解释如下:

(单顶置凸轮轴发动机)根据凸轮轴位置数量划分的发动机类型,SOHC表示单顶置凸轮轴发动机,适用于2气门发动机。

(双顶置凸轮轴发动机)表示双顶置凸轮轴发动机,适用于多气门发动机。通常发动机每缸有2个气门,近几年来也不断出现了4气门、5气门发动机,这无疑为提高发动机高转速时的进气效率功率开辟了途径。此类发动机适用于高速发动机,并可适当降低高转速时的燃油消耗。

(涡轮增压)即涡轮增压,其简称为T,一般在车尾标有1.8T、2.8T等字样。涡轮增压有单涡轮增压和双涡轮增压,我们通常指的涡轮增压是指废气涡轮增压,一般通过排放的废气驱动叶轮带动泵轮,将更多空气送入发动机,从而提高发动机的功率,同时降低发动机的燃油消耗。

(可变气门配气相位和气门升程电子控制系统) 由本田汽车开发的VTEC是世界上第一款能同时控制气门开闭时间及升程两种不同情况的气门控制系统 ,现在已演变成i-VTEC 。i-VTEC发动机与普通发动机最大的不同是 ,中低速和高速会用两组不同的气门驱动凸轮 ,并可通过电子系统自动转换 。此外 ,发动机还可以根据行驶工况自动改变气门的开启时间和提升程度 ,即改变进气量和排气量 ,从而达到增大功率 、降低油耗的目的 。

(智能可变气门正时和升程系统) i-vtec.系统是本田公司的智能可变气门正时系统的英文缩写,最新款的本田轿车的发动机已普遍安装了i-vtec系统。本田的i-vtec系统可连续调节气门正时,且能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。

(可变汽缸管理系统) 本田VCM可变汽缸管理系统技术,在V6 i-VTEC发动机上使用的VCM系统是首次应用在非混合动力的雅阁车型上,新一代的VCM系统能够在三缸、四缸和全六缸工作模式间切换,而以前只能在三缸与四缸工作模式间切换。VCM系统能够让新雅阁在起步、加速或爬坡等任何需要大功率输出的情况下保证全部六个汽缸投入工作。而在中速巡航和低发动机负荷工况下,仅运转一个汽缸组,即三个汽缸,后排汽缸组停止工作。在中等加速、高速巡航和缓坡行驶时,发动机将会用4个汽缸来运转,即前排汽缸组的左侧和中间汽缸正常工作,后排汽缸组的右侧和中间汽缸正常工作。 全新的3.5升V6发动机,采用了本田最先进的VCM可变气缸管理技术。VCM系统能够在3缸、4缸和全6缸工作模式间自动切换,在车辆起步、加速或爬坡等任何需要大功率输出的情况下,全部6个气缸投入工作;在中速巡航和低发动机负荷工况下,系统仅运转一个气缸组,即3个气缸;在中等加速、高速巡航和缓坡行驶时,发动机将会用4个气缸来运转,从而大大降低了燃油消耗。这款3.5L V6不但是迄今为止动力最强劲的本田发动机,其油耗还比上代雅阁3.0车型降低了7%。

(连续可变气门正时发动机) 该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。

(连续可变气门正时智能控制系统) C-VTC连续可变气门正时智能控制系统的技术同VVT基本一致。

(智能可变配气正时系统) VVT-i是丰田独有的发动机技术 ,已十分成熟 ,近年国产的丰田轿车 ,包括新款的威驰等大都装配了VVT-i系统 。与本田汽车的VTEC原理相似 ,该系统的最大特点是可根据发动机的状态控制进气凸轮轴 ,通过调整凸轮轴转角对配气时机进行优化 ,以获得最佳的配气正时 ,从而在所有速度范围内提高扭矩 ,并能改善燃油经济性 ,从而有效提高了汽车性能

(双智能可变气门正时发动机) 双VVT-i指的是分别控制发动机的进气系统和排气系统。在急加速时,控制进气的VVT-i会提前进气时间,并提高气门的升程,而控制排气的VVT-i会推迟排气时间,此效果如同一个较小的涡轮增压器,能有效地提升发动机动力。同时,由于进气量的的加大,也使得汽油的燃烧更加完全,实现低排放的目的。

三菱(现代也在使用)的GDI发动机通过稀薄燃烧技术,让燃料消耗减少20%-35%,让二氧化碳排放减少20%,而输出功率则比普通的同排量发动机10%。缸内直喷技术是稀薄燃烧技术的一个分支。与普通发动机最大的不同之处就在于它的直接喷射系统。其实缸内直喷并不是什么新鲜技术,在很多年以前,许多柴油发动机就采用了这种技术设计,而将它运用在汽油发动机上,才属于几年的事情。缸内直喷技术有两大好处: 1、发动机能在火花塞点火之前把汽油直接喷射到高压的燃烧室,同时在ECU的精确控制下,使混合气体分层燃烧。这种技术可以让靠近火花塞处的混合气相对较浓,远离火花塞的混合气相对较稀,从而更有效的实现“稀薄”点火和分层燃烧。 2、由于汽油是直接被喷射到汽缸内的,与传动的缸外喷射相比,混合气体不需要经过节气阀,因此能减小节气阀对混合气体产生的气阻。

(双可变气门正时,可变进气系统发动机) 劳恩斯(Rohens)的基本配置,V-6 Lambda发动机在进气和排气凸轮轴上均采用了双可变气门正时(D-CVVT)技术,并配备了新的可变进气系统(VIS),提高了气缸的进气量,从而提高了燃油的效率。配置3.8升V-6发动机动力为290马力,尽管输出功率强大,但丝毫不影响其环保和超低排放控制(ULEV)的特性。这其中,带超速档的爱信6速自动变速器功不可没,其变速性能顺畅、传动比宽广,正是这些保证了劳恩斯(Rohens)的强大动力和出色燃油经济性。

(连续可变的气门正时系统) 韩国的汽车工业一向不以技术先进闻名 ,所以所用技术也多是借鉴了德 、日等国的经验 ,而CVVT正是在VVT-i和i-VTEC的基础上研发而来 。以现代汽车的CVVT引擎为例 ,它能根据发动机的实际工况随时控制气门的开闭 ,使燃料燃烧更充分 ,从而达到提升动力 、降低油耗的目的 。但是CVVT不会控制气门的升程 ,也就是说这种引擎只是改变了吸

(涡轮直喷增压发动机) TDI是英文Turbo Direct Injection的缩写,意为涡轮增压直接喷射(柴油发动机)。 为了解决SDI的先天不足,人们在柴油机上加装了涡轮增压装置,使得进气压力大大增加,压缩比一般都到10以上,这样就可以在转速很低的情况下达到很大的扭矩,而且由于燃烧更加充分,排放物中的有害颗粒含量也大大降低 TDI技术使燃油经由一个高压喷射器直接喷射入气缸,因为活塞顶地造型是一个凹陷式的碗状设计,燃油会在气缸内形成一股螺旋状的混合气。宝来TDI装备的大众集团首创的直喷式涡轮增压柴油发动机(TDI)技术十分先进,而且采用了多项先进技术,例如泵喷射系统、可调叶片式涡轮增压器等等都是首次在国产轿车上应用。宝来TDI采用了最新的高压燃油喷射技术———泵喷射系统。此系统使柴油与空气混合更充分,燃烧更彻底;同时采用氧化型催化反应器,大大降低了CO、HC、颗粒的排放,其中CO2排放与同排量汽油车比可降低30%。另外,采用EGR系统,大大降低了NOx产生,其排放指标满足欧3标准。Volkswagen柴油引擎的「TDI标志」,正是目前世界公认最成功的柴油引擎。

(缸内直喷分层燃烧引擎) FSI是汽油发动机领域的一项全新技术 ,意指燃油分层喷射。有些类似于柴油发动机的高压供油技术 。它配备了按需控制的燃油供给系统 ,然后通过一个活塞泵提供所需的压力 ,最后喷油嘴将燃料在最恰当的时间直接注入燃烧室 。通过对燃烧室内部形状的设计 ,使火花塞周围会有较浓的混合气 ,而其他区域则是较稀的混合气 ,保证了在顺利点火的情况下尽可能地实现稀薄燃烧 ,这也是分层燃烧的精髓所在 。FSI比同级引擎动力性显著提高 ,油耗却可降低15%左右 。

(涡轮增压燃油分层喷射发动机) 这个比FSI多出来的T字代表的则是涡轮增压(Turbocharger),而发动机本身也的确是在FSI发动机的基础上增加了一个涡轮增压器。涡轮增压是利用排气的高温高压推动废气涡轮高速转动,在带动进气涡轮压缩进气,提高空气密度,同时电脑控制增大喷油量,配合高密度的进气,因此可以在排量不变的条件下提高发动机工作效率。一汽-大众和上海大众对他们的1.4TFSI和1.8TFSI发动机的称呼,二者都称为1.4TSI和1.8TSI,这个称呼是极不负责的。同时,厂商为了避免大家对TFSI简称TSI产生异议,他们对此解释为:“因为一贯体系中我们一般采用3个字作为发动机特有技术的称呼,所以这次我们把TFSI简称为TSI,其中T代表涡轮增压,SI代表直喷技术”。国产迈腾、速腾等车型最新的TSI发动机实际上跟前面说到的TSI并不是一回事。迈腾1.8TSI和即将搭载在速腾身上的1.4TSI发动机实际上阉割了机械增压和燃油分层技术。当然,这也是国产化之后处于油品和成本问题的考虑。因为,一个机械增压套件少说也得1.5万元,5万公里就需要更换一次,外加10万多公里还需要换更贵的涡轮增压。

(机械涡轮增压与燃油直喷发动机) TSI(涡轮机械增压燃油分层喷射发动机)的设计非常巧妙,它实际上是把一个涡轮增压器(Turbocharger)和机械增压器(Supercharger)一起装到一台发动机里面。TSI中的T不是指Turbocharger而是Twincharger(双增压)的意思。上文我们讲到涡轮增压发动机在较低和较高转速时都有一个动力的空挡,为了进一步提高发动机的效率,增加一个机械增压装置,并让它在低转速时加大进气压力。而涡轮增压器的尺寸可以再大一些,去弥补高转速时的动力空挡,从而达到一个从低到高转速的全段优异动力表现。

(可变气门升程系统) AVS指的是可变气门升程系统,又叫两级可变正时控制系统,总的来说搭载了这样配备的发动机将能很大程度的省油节能,同时加大马力。这项技术在奥迪车上广泛使用。

(可变进气道系统) 可在PCM的控制下,在发动机大功率输出时适时打开VAD气道(多打开一个气道,相当于气道口径变大),可以最大程度地保证发动机空气量的需求充分发挥发动机的动力性能。此项技术在马自达车系上广泛使用。

顾名思义它不是由油门拉线控制进气总管的开度而是利用直流电机通过减速机构来自动实现的。功能和工作过程:它具有普通节气门的基本功能,其作用是打开进气歧管在总管上的通道,不同工况打开不同的开度,一般轿车的节气门都是由脚踏板带动的油门拉线控制。但这种拉线控制的节气门在急加速等特殊工况时有进气迟滞现象,也就是说在急加速等特殊工况时,节气门的开度信号通过节所气门位置传感器已送出,但实际进入气缸的空气并没有及时跟进,而且节气门处在气流扰动下并不是很平稳,因此空气量并不稳定,加速不理想和不稳定。而电子节气门可根据节气门位置信号,PCM直接驱动直流电动机快速作响应,及时地将节气门打开所需的开度,而且电子节气门在自身减速机构的自锁作用下,不会因为气流的扰动而波动,以保证发动机的进气量和转速的稳定。优点:电控方式响应速度快,能够及时保证在相应工况供给。最合的空气量;空气量的控制精确度高,稳定性好。

(天然气发动机) CNG天然气发动机尾气净化转化器一般由二部分组成,即蜂窝陶瓷催化剂和金属外壳,主要原理是: 排放的尾气通过蜂窝陶瓷催化剂,催化剂的活性组份主要是稀土金属氧化物、贵金属和过渡金属,在200~300℃以上温度条件下,能充分进行催化反应,将尾气中的有害成分CO、HC、NOX等转化成无毒的水、二氧化碳和氮气。a、关健技术 项目的核心是CNG发动机尾气净化技术,它属于三元净化催化剂技术,是目前治理CNG发动机尾气的主要方法。目前主要应用于出租车和部分车型上。

(智能可变气门正时与升程控制系统) MIVEC机构是通过ECU发出精确指令控制进气凸轮轴相位:发动机的ECU在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,减少耗油量和废气排放。此项技术在三菱车系广泛使用。

(双凸轮轴可变气门正时发动机) 1992年,宝马推出了气门无级调节管理——Double-VANOS双凸轮轴可变气门正时系统,是应用在BMW M3上的世界首创技术。此控制系统的优点是可以根据发动机运行状态,通过凸轮轴精确的角度控制对进气门和排气门的气门正时进行无级调节,并且不受油门踏板位置和发动机转速的影响。在实际驾驶中,这意味着在发动机转速较低时可以提供充足的扭矩,而在高转速范围内则可达到最佳的功率。此外,Double-VANOS双凸轮轴可变气门正时系统可极大地减少未燃烧的残余气体,从而改进了发动机的怠速性能。在宝马全系里几乎全部使用此技术。

福克斯的 duratec-he反置式铝合金发动机,采用全铝合金材质铸造,反置式设计,最大功率可达104kw,最大扭矩可达180n·m(2.0l发动机)[1],配 合vis(variable intake system)可变惯性进气装置、塑钢等长进气歧管,展现出加速敏捷、运转平顺、高效能进气效果与低噪音低油耗的优势动力水平。

发动机活塞平均分布在曲轴两侧,在水平方向上左右运动。使发动机的整体高度降低、长度缩短、整车的重心降低,车辆行驶更加平稳,发动机安装在整车的中心线上,两侧活塞产生的力矩相互抵消,大大降低车辆在行驶中的振动,便发动机转速得到很大提升,减少噪音。

(吸入式可变正时凸轮发动机) i-VCT,也叫可变进气凸轮正时系统,可使用发动机在2000rpm至5000rpm的转速区间输出90%以上的扭矩,保证了发动机性能连续性。VVT—i,可变配气正时系统,偏重低转速时的特性,但实际上丰田的VVT—i在低于2000rpm时扭力并不丰厚,低转速高挡行车更有扭力不足的感觉。这是因为VVT—i的运作并不能覆盖低转速的范围,只能靠挡位的配合。而丰田的排挡太注重行驶的平顺,也就导致了整合车的行驶并没有任何激情可言。但起步加速阶段的冲力不错,这也是特意调校用来满足城市驾驶的特点。 全新第三代福特蒙迪欧所搭载的DURATEC-HE2.3直列四缸16气门双顶置凸轮轴铝合金发动机,就是采用i-VCT可变进气凸轮正时等先进技术,排放达到欧IV标准。较之同级别产品,在低速时更为省油,在高速时动力输出更为充沛。

(智能直喷发动机) 凯迪拉克SIDI发动机汇集了缸内智能直喷、D-VVT电子可变双气门正时以及最新的ECM发动机管理模块。 SIDI双模直喷发动机的结构进行了大幅度调整,相比原先喷入进气歧管的方式,SIDI发动机将多点喷射供油系统替换成可变气门缸内直喷系统,这是将喷油嘴植入汽缸内,通过高压将燃油雾化喷入汽缸内,并混合空气进行点燃,从而实现缸内稀薄燃烧,由此提升了发动机效率。同时还具备优秀的燃油经济性和更低的尾气排放。另外,缸内直喷技术由于允许更高的压缩比(SIDI的压缩比高达11.1:1),能够大大减少缸内爆震情况,减少发动机的震动。以上的这些优势都能使发动机的寿命相比普通电喷发动机长了许多。 综合以上特点,SIDI双模直喷发动机与同排量的多点喷射供油发动机相比最大功率可以提升15%左右,最大扭矩能够提升8%左右,同时还能有3%以上的省油效率。

通常所说的混合动力一般是指油电混合动力,即燃料(汽油,柴油等)和电能的混合。 混合动力汽车是有电动马达作为发动机的辅助动力驱动汽车。 混合动力汽车的燃油经济性能高,而且行驶性能优越,混合动力汽车的发动机要使用燃油,而且在起步、加速时,由于有电动马达的辅助,所以可以降低油耗,简单地说,就是与同样大小的汽车相比,燃油费用更低。 而且,辅助发动机的电动马达可以在启动的瞬间产生强大的动力,因此,车主可以享受更强劲的起步、加速。同时,还能实现较高水平的燃油经济性。

混合动力汽车的种类目前主要有3种: 一种是以发动机为主动力,电动马达作为辅助动力的“并联方式”。(Parallel Hybrid)这种方式主要以发动机驱动行驶,利用电动马达所具有的再启动时产生强大动力的特征,在汽车起步、加速等发动机燃油消耗较大时,用电动马达辅助驱动的方式来降低发动机的油耗。这种方式的结构比较简单,只需要在汽车上增加电动马达和电瓶。

另外一种是,在低速时只靠电动马达驱动行驶,速度提高时发动机和电动马达相配合驱动的“串联、并联方式”。(Fuel Cell)启动和低速时是只靠电动马达驱动行驶,当速度提高时,由发动机和电动马达共同高效地分担动力,这种方式需要动力分担装置和发电机等,因此结构复杂。

还有一种是只用电动马达驱动行驶的电动汽车“串联方式”。(Series Hybrid)发动机只作为动力源,汽车只靠电动马达驱动行驶,驱动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。

我要回帖

更多关于 npn和pnp工作原理 的文章

 

随机推荐