(1-3/7)x=(1-4/9)(x+3)的2/3X÷1/4=12解方程程?


· TA获得超过3.6万个赞


· TA获得超过3.7万个赞

下载百度知道APP,抢鲜体验

使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。

与传统的基于大质数因子分解困难性的加密方法不同,ECC通过椭圆曲线方程式的性质产生密钥

ECC164位的密钥产生一个安全级,相当于RSA 1024位密钥提供的保密强度,而且计算量较小,处理速度更快,存储空间和传输带宽占用较少。目前我国居民二代身份证正在使用 256 位的椭圆曲线密码,虚拟货币比特币也选择ECC作为加密算法。

古希腊数学家欧几里得的《几何原本》提出了五条公设。

  • 1.由任意一点到任意一点可作直线。

  • 2.一条有限直线可以继续延长。

  • 3.以任意点为心及任意的距离可以画圆。

  • 5.同一平面内一条直线a和另外两条直线b.c相交,若在a某一侧的两个内角的和小于两直角,则b.c两直线经无限延长后在该侧相交。

《几何原本》只有在第29个命题

一条直线与两条平行直线相交,则所成的内错角相等,同位角相等,且同旁内角之和等于两直角

中才用到第五公设,即《几何原本》中可不依靠第五公设而推出前28命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论

1820年代,俄国喀山大学罗巴切夫斯基用“至少可以找到两条相异的直线,且都通过P点,并不与直线R相交”代替第五公设,然后与欧氏几何的前四个公设结合成一个公理系统,他经过细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的几何体系。

这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。从罗氏几何学中,可以得出这样一个结论:逻辑上不矛盾的一些公理都有可能提供一种几何学。现存非欧几何的类型可以概括如下:

1.坚持第五公设,引出欧几里得几何。

2.“可以引最少两条平行线”为公设,罗氏几何(双曲几何)。

3.“一条平行线也不能引”为公设,黎曼几何(椭圆几何)

左:双曲几何,即罗氏几何;中:欧几里德几何;右:椭圆几何,即黎曼几何

了解非欧式几何,就可以理解平行线的交点。

定义平行线相交于无穷远点P∞,使平面上所有直线都统一为有唯一的交点

  • 1.一条直线只有一个无穷远点;一对平行线有公共的无穷远点

  • 2.任何两条不平行的直线有不同的无穷远点(否则会造成有两个交点)

  • 3.平面上全体无穷远点构成一条无穷远直线

射影平面:平面上全体无穷远点与全体平常点构成射影平面

求点(1,2)在新的坐标体系下的坐标

一条椭圆曲线是在射影平面上满足威尔斯特拉斯方程(Weierstrass)所有点的集合

  • 1椭圆曲线方程是一个齐次方程

  • 3圆曲线的形状,并不是椭圆的。只是因为椭圆曲线的描述方程,类似于计算一个椭圆周长的方程故得名

这两个方程都不是椭圆曲线,因为他们在(0:0:1)点处(即原点)没有切线,不满足椭圆曲线每个点都必须是非奇异的(光滑的),

我们已经看到了椭圆曲线的图象,但点与点之间好象没有什么联系。我们能不能建立一个类似于在实数轴上加法的运算法则呢?这就要定义椭圆曲线的加法群,这里需要用到近世代数中阿贝尔群。

在数学中,群是一种代数结构,由一个集合以及一个二元运算所组成。已知集合和运算(G,*)如果是群则必须满足如下要求

阿贝尔群除了上面的性质还满足交换律公理(ab)c = a* (b*c)

同样在椭圆曲线也可以定义阿贝尔群。

任意取椭圆曲线上两点P、Q(若P、Q两点重合,则作P点的切线),作直线交于椭圆曲线的另一点R',过R'做y轴的平行线交于R,定义P+Q=R。这样,加法的和也在椭圆曲线上,并同样具备加法的交换律、结合律

若有k个相同的点P相加,记作kP

椭圆曲线是连续的,并不适合用于加密;所以,我们必须把椭圆曲线变成离散的点,我们要把椭圆曲线定义在有限域上。
我们给出一个有限域Fp

  • Fp的单位元是1,零元是 0

  • Fp域内运算满足交换律、结合律、分配律

选择两个满足下列约束条件的小于p的非负整数a、b

Fp上的椭圆曲线同样有加法

我要回帖

更多关于 (-7)+11+3+(-2)过程 的文章

 

随机推荐