金属氧物膜湿度传感器测量工作原理的工作原理

现如今,物联网能如火如荼的发展,离不开方方面面的支持和帮助。本文就说说传感器方面,无论是工业物联网还是商用物联网,传感器是不可缺少的重要组成部分之一。本文就带大家盘点那些不可或缺的传感器,你们都知道吗?

让我们看一下在IoT世界中广泛使用的一些关键传感器。

根据定义,“一种用于测量热能的设备,被称为温度传感器。该设备允许检测特定来源的温度的物理变化并转换设备或用户的数据。”

这些传感器已经在多种设备中部署了很长时间。但是,随着物联网的出现,他们发现更多设备中存在更多空间。

仅在几年前,它们的用途主要包括A / C控制,冰箱和用于环境控制的类似设备。但是,随着物联网世界的到来,他们已经在制造过程,农业和卫生行业中找到了自己的角色。

在制造过程中,许多机器需要特定的环境温度以及设备温度。通过这种测量,制造过程始终可以保持最佳状态。

另一方面,在农业中,土壤温度对作物生长至关重要。这有助于植物的生产,使产量最大化。

以下是温度传感器的一些子类别:

热电偶:这些是电压设备,可通过电压变化指示温度测量。随着温度升高,热电偶的输出电压升高。

电阻温度检测器(RTD):设备的电阻与温度成正比,当温度上升时电阻沿正方向增加。

热敏电阻:这是一个对温度敏感的电阻,会随着温度的变化而改变其物理电阻。

IC(半导体):它们是线性器件,其中半导体的电导率线性增加,并且利用了半导体材料的可变电阻特性。它可以提供数字形式的直接温度读数,尤其是在低温下。

红外传感器:它通过拦截物体或物质发出的一部分红外能量并检测其强度来检测温度,只能用于测量固体和液体的温度,由于其透明性,因此无法在气体上使用。

一种设备,可检测附近物体的存在与否或该物体的属性,并将其转换为信号,用户或简单的电子仪器都可以轻松读取该信号,而无需与它们接触。

接近传感器广泛用于零售行业,因为它们可以检测运动以及客户与他们可能感兴趣的产品之间的相关性。立即向用户通知附近产品的折扣和特价。

车辆是另一个很大且相当古老的用例。您正在倒车,并在倒车时对障碍物感到不适,这就是接近传感器的工作。

它们还用于在商场,体育馆或机场等地方提供停车位。

以下是一些接近传感器子类别:

电感式传感器:电感式接近传感器用于非接触式检测,可通过电磁场或电磁辐射束发现金属物体的存在,它的运行速度比机械开关快,并且由于其坚固性而显得更可靠。

电容式传感器:电容式接近传感器既可以检测金属目标,也可以检测非金属目标。几乎所有其他材料的介电常数与空气不同。它可用于通过很大一部分目标感应很小的物体。因此,通常用于困难和复杂的应用程序中。

光电传感器:光电传感器由光敏部件组成,并使用光束检测物体的存在或不存在。它是电感式传感器的理想替代品。并用于远距离感测或感测非金属物体。

超声波传感器:超声波传感器还用于检测目标的存在或测量类似于雷达或声纳的目标的距离。这为恶劣和苛刻的条件提供了可靠的解决方案。

压力传感器是一种感测压力并将其转换为电信号的设备。在此,量取决于所施加的压力水平。

有许多设备依靠液体或其他形式的压力。这些传感器使创建物联网系统成为可能,该物联网系统监视受压力推动的系统和设备。在偏离标准压力范围的任何情况下,设备都会将应解决的任何问题通知系统管理员。

部署这些传感器不仅在制造中非常有用,而且在整个水系统和加热系统的维护中也非常有用,因为它很容易检测到压力的任何波动或下降。

水质传感器主要用于水分配系统中的水质检测和离子监测。

实际上到处都使用水。这些传感器在监测不同用途的水质时起着重要的作用。它们用于各种行业。

以下是使用中最常见的水传感器类型的列表:

余氯传感器:它测量水中的余氯(即游离氯,一氯胺和总氯),由于其效率高而被广泛用作消毒剂。

总有机碳传感器:TOC传感器用于测量水中的有机元素。

浊度传感器:浊度传感器可测量水中的悬浮固体,通常用于河流和溪流表计,废水和污水测量中。

电导率传感器:电导率测量主要在工业过程中进行,以获取有关水溶液中总离子浓度(即溶解的化合物)的信息。

pH传感器:用于测量溶解水中的pH值,指示其酸性或碱性(碱性)程度。

氧还原电位传感器:ORP测量可洞察溶液中发生的氧化/还原反应的水平。

化学传感器应用于许多不同的行业。他们的目标是指出液体的变化或找出空气中的化学变化。它们在较大的城市中起着重要作用,在这些城市中,有必要跟踪变化并保护人口。

化学传感器的主要用例可以在工业环境监测和过程控制中找到,有意或无意释放的有害化学物质检测,爆炸和放射性检测,空间站,制药业和实验室的回收过程等。

以下是最常用的化学传感器:

气体传感器与化学传感器相似,但专门用于监视空气质量的变化并检测各种气体的存在。像化学传感器一样,它们用于制造业,农业和健康等众多行业,并用于空气质量监测,有毒或可燃气体的检测,煤矿,石油和天然气工业中的有害气体监测,化学实验室研究,制造–油漆,塑料,橡胶,制药和石化等

以下是一些常见的气体传感器:

烟雾传感器是一种感测烟雾(空气中的微粒和气体)并保持其水平的设备。

它们已经使用了很长一段时间。但是,随着物联网的发展,它们现在更加有效,因为它们已插入系统中,该系统可立即通知用户有关不同行业中发生的任何问题。

烟雾传感器广泛用于制造业,HVAC,建筑物和建筑物的基础设施中,以检测火灾和气体事件。这样可以保护在危险环境中工作的人员,因为与旧系统相比,整个系统更加有效。

烟雾传感器检测其周围是否存在烟雾,气体和火焰。可以通过光学方法或物理方法或通过使用这两种方法进行检测。

光学烟雾传感器(光电):光学烟雾传感器使用光散射原理触发乘员。

电离感烟传感器:电离感烟传感器基于电离原理工作,这种化学原理可检测引起触发警报的分子。

红外传感器是用于通过发射或检测红外辐射来感测其周围环境的某些特征的传感器。它还能够测量物体散发的热量。

它们现在用于各种IoT项目中,尤其是在医疗保健领域,因为它们使对血流和血压的监视变得简单。它们甚至还用于各种常规的智能设备中,例如智能手表和智能手机。

其他常见用途包括家用电器和遥控器,呼吸分析,红外视觉(例如,可视化电子设备中的热泄漏,监测血液流动,艺术史学家可以查看油漆层以下),可穿戴电子设备,光学通讯,基于非接触的温度测量,汽车盲角检测。

它们的用途不止于此,它们还是确保您家中高级别安全的好工具。此外,它们的应用还包括环境检查,因为它们可以检测各种化学物质和热泄漏。它们将在智能家居行业中扮演重要角色,因为它们具有广泛的应用范围。

用于确定在打开或关闭的系统中流动的液体,液体或其他物质的液位或数量的传感器称为液位传感器。

像IR传感器一样,液位传感器也存在于众多行业中。它们主要用于测量燃料水平,但也用于处理液态材料的企业。例如,回收行业以及果汁和酒精行业都依靠这些传感器来测量其拥有的液体资产的数量。

液位传感器的最佳用例是:打开或关闭容器中的电量监测和液位,海平面监测和海啸预警,储水罐,医疗设备,压缩机,液压储罐,机床,饮料和制药工艺,高或低液位检测等.

由于传感器可以随时收集所有重要数据,因此有助于更好地简化业务。使用这些传感器,任何产品经理都可以精确地看到准备分配多少液体以及是否应加快生产。

有两种基本的液位测量类型:

点位传感器:点位传感器通常会检测特定的特定水平,并在感应对象高于或低于该水平时对用户做出响应。它集成到单个设备中以获取警报或触发

连续液位传感器:连续液位传感器测量指定范围内的液体或干燥物料液位,并提供连续指示液位的输出。最好的例子是车辆中的油位显示。

图像传感器是用于将光学图像转换为电子信号以电子方式显示或存储文件的仪器。

图像传感器的主要用途是在数码相机和模块,医学成像和夜视设备,热成像设备,雷达,声纳,媒体室,生物识别和IRIS设备中。

两种主要类型的传感器用于:

CCD(电荷耦合器件),以及

CMOS(互补金属氧化物半导体)成像仪。

尽管每种类型的传感器使用不同的技术来捕获图像,但CCD和CMOS成像器均使用金属氧化物半导体,对光的敏感度相同,并且没有固有的质量差异

普通消费者会认为这是一台普通的相机,尽管事实并非遥不可及,但是图像传感器却与各种不同的设备连接在一起,从而使其功能大大提高。

汽车行业是最着名的用途,图像在其中起着非常重要的作用。使用这些传感器,系统可以识别驾驶员通常会在道路上注意到的标志,障碍物和许多其他东西。它们在物联网行业中起着非常重要的作用,因为它们直接影响无人驾驶汽车的发展。

它们也在改进的安全系统中实现,其中的映像可帮助捕获有关犯罪者的详细信息。

在零售行业中,这些传感器用于收集有关客户的数据,帮助企业更好地了解谁在实际访问他们的商店,种族,性别,年龄等只是零售所有者通过使用这些IoT传感器获得的一些有用参数。

运动检测器是一种电子设备,用于检测给定区域中的物理运动(运动),并将运动转换为电信号。任何物体的运动或人类的运动

运动检测在安全行业中起着重要作用。企业在始终不能检测到移动的区域中使用这些传感器,并且很容易注意到安装了这些传感器的任何人的存在。

这些主要用于入侵检测系统,自动门控制,动臂护栏,智能摄像机(即基于运动的捕获/视频记录),收费广场,自动泊车系统,自动水槽/马桶冲洗器,干手机,能源管理系统(即自动照明,交流,风扇,设备控制)等

另一方面,这些传感器还可以解密不同类型的运动,使其在某些行业中非常有用,在这些行业中,客户可以通过挥手或执行类似操作来与系统进行通信。例如,某人可以向零售商店中的传感器挥手,以请求协助做出正确的购买决定。

尽管它们的主要用途与安全行业相关,但是随着技术的发展,这些传感器的可能应用数量只会不断增加。

以下是广泛使用的关键运动传感器类型:

被动红外(PIR):它检测人体热量(红外能量)和家庭安全系统中使用最广泛的运动传感器。

超声波:发出超声波脉冲,并通过跟踪声波的速度来测量运动物体的反射。

微波:发出无线电波脉冲并测量移动物体的反射。与红外和超声波传感器相比,它们覆盖的面积更大,但是它们容易受到电干扰并且价格更高。

加速度计是一种传感器,用于测量物体由于惯性力而经历的物理或可测量的加速度,并将机械运动转换为电输出。定义为速度相对于时间的变化率

这些传感器现在存在于数百万种设备中,例如智能手机。它们的用途通常涉及振动,倾斜和加速度的检测。这非常适合监控您的驾驶团队或使用智能计步器。

在某些情况下,它可以用作防盗保护的一种形式,因为如果移动了应保持静止的物体,则传感器可以通过系统发送警报。

它们广泛用于蜂窝和媒体设备,振动测量,汽车控制和检测,自由落体检测,飞机和航空工业,运动检测,体育学院/运动员行为监测,消费电子产品,工业和建筑工地等。

加速度计种类繁多,以下是主要用于物联网项目的加速度计:

霍尔效应加速度计:霍尔效应加速度计采用霍尔原理来测量加速度,它可以测量由其周围磁场变化引起的电压变化。

电容式加速度计:电容式加速度计根据两个平面之间的距离来感应输出电压。电容式加速度计也较不容易受噪声和温度变化的影响。

压电加速度计:压电传感原理正作用于压电效应。基于压电膜的加速度计最适合用于测量振动,冲击和压力。

每种加速度计传感技术都有其自身的优点和折衷之处。在选择之前,重要的是要了解各种类型的基本差异以及测试要求。

用于测量角速度或角速度的传感器或设备被称为陀螺仪传感器。角速度被简单地定义为围绕轴的旋转速度的量度。该设备主要用于在3轴方向上导航和测量角速度和旋转速度。最重要的应用是监视对象的方向。

它们的主要应用领域包括汽车导航系统,游戏控制器,蜂窝和摄像头设备,消费类电子产品,机器人控制,无人机和RC控制直升机或无人机控制,车辆控制/ ADAS等。

陀螺仪传感器有几种,分别根据其工作机理,输出类型,功率,感应范围和环境条件进行选择。

MEMS(微机电系统)陀螺仪

这些传感器始终与加速度计结合使用。这两个传感器的使用仅向系统提供更多反馈。在安装陀螺仪传感器后,许多设备可以帮助运动员提高运动效率,因为他们可以在运动期间接触运动员的运动。

这只是其应用的一个示例,但是,由于此传感器的作用是检测旋转或扭曲,因此它的应用对于某些制造过程的自动化至关重要。

湿度定义为空气或其他气体气氛中水蒸气的量。最常用的术语是“相对湿度(RH)

这些传感器通常遵循温度传感器的使用,因为许多制造过程都需要完美的工作条件。通过测量湿度,可以确保整个过程平稳进行,并且在发生任何突然变化时,可以立即采取措施,因为传感器几乎可以立即检测到变化。

它们的应用和用途可在工业和住宅领域中用于加热,通风和空调系统控制。它们也可以在汽车,博物馆,工业空间和温室,气象站,油漆和涂料行业,医院和制药行业中找到,以保护药品

测量光线的物理量并将其转换为用户或电子仪器/设备易于读取的电信号的传感器称为光学传感器。

光学传感器受到IoT专家的喜爱,因为它们可用于同时测量不同物体。该传感器背后的技术使其能够监视电磁能,其中包括电,光等。

由于这个事实,这些传感器已用于医疗保健,环境监测,能源,航空航天和许多其他行业。有了石油公司,制药公司和采矿公司的存在,他们可以更好地跟踪环境变化,同时保持员工安全。

它们的主要用途是在环境光检测,数字光开关,光纤通信中,因为最适合于石油和天然气应用,民用和运输领域,高速网络系统,电梯门控制,装配线零件计数器和电气隔离的电气隔离安全系统。

以下是光学传感器的关键类型:

光电探测器:它使用光敏半导体材料(例如光电管,光电二极管或光电晶体管)作为光电探测器

光纤:光纤不带电流,因此它不受电磁干扰的影响,即使在损坏的条件下也不会产生火花或电击危险。

高温计:它通过感测光的颜色来估计物体的温度,并且物体根据其温度辐射光并在相同温度下产生相同的颜色。

接近和红外:接近使用光感应附近的物体,而在可见光不方便的地方使用红外。

显然,物联网已经变得非常受欢迎,而目前的趋势表明它是未来。它仅有助于各种流程的自动化,从而使这些系统对于普通消费者和企业都非常有用。

随着整个平台通过融合上述所有传感器而变得更加智能,我们尚未看到该技术的全部潜力。当您考虑到所有测量数据都可以收集并可以分析的事实时,很明显,物联网将在未来变得更加智能。

声明:本内容为作者独立观点,不代表电源网。本网站原创内容,如需转载,请注明出处;本网站转载的内容(文章、图片、视频)等资料版权归原作者所有。如我们采用了您不宜公开的文章或图片,未能及时和您确认,避免给双方造成不必要的经济损失,请电邮联系我们,以便迅速采取适当处理措施;欢迎投稿,邮箱∶。

湿度与人类的生活密切相关,任何行业的都离不开空气,而空气的湿度又与工作、生活、生产有直接联系,使湿度的监测与控制越来越显得重要。应用领域不同,对的技术要求也不同。从制造角度看,同是湿度传感器,但是原理、材料、结构,工艺各不相同.其性能和技术指标有很大差异,因而价格也相差甚远。湿度传感器的应用主要有以下几个方面:

1)气候监测天气测量和预报对工农业生产、军事及人民生活和科学实验等方面都有重要意义,因而湿度传感器是必不可少的测湿设备。

2)温室养殖现代农林畜牧各产业都有相当数量的温室,温室的湿度控制与温度控制同样重要,把湿度控制在农作物、树木、畜禽等生长适宜的范围,是减少病虫害、提高产量的条件之一。

3)工业生产 在纺织、电子、精密机器、陶瓷工业等部门,空气湿度直接影响产品的质量和产量,必须有效地进行监测调控。

4)物品储藏 各种物品对环境均有一定的适应性。湿度过高过低均会使物品丧失原有性能。如在高湿度地区,电子产品在仓库的损害严重,非金属零件会发霉变质,金属零件会腐蚀生锈。

5)精密仪器的使用保护 许多精密仪器、设备对工作环境要求较高,环境湿度必须控制在一定范围内,以保证它们的正常工作,提高工作效率及可靠性。如电话程控交换机工作湿度在55 %-10 %较好。温度过高会影响绝缘性能,过低又易产生静电,影响正常工作。

湿度包括气体的湿度和固体的湿度。气体的湿度是指大气中水蒸气的含量,度量方法有绝对湿度,即每立方米气体在标况下(0℃,1大气压)所含有的水蒸气的重量,即水蒸气密度;相对湿度,即一定体积气体中实际含有的水蒸气分压与相同温度下该气体所能包含的最大水蒸气分压之比;或含湿量,即每㎏干空气中所含水蒸气的质量。其中相对湿度是最常用的。固体的湿度是物质中所含水分的百分数,即物质中所含水分的质量与其总质量之比。

利用水分子有较大的偶极矩,因而易于吸附在固体表面并渗透到固体内部的特性制成的泽天湿度传感器称为水分子亲和力型湿度传感器,其测量原理在于感湿材料吸湿或脱湿过程改变其自身的性能从而构成不同类型的泽天湿度传感器;把与水分子亲和力无关的湿度传感器称为非水分子亲和力型传感器,其主要的测量原理有:利用潮湿空气和干燥空气的热传导之差来测定湿度;利用微波在含水蒸汽的空气中传播,水蒸汽吸收微波使其产生一定的能量损耗,传输损耗的能量与环境空气中的湿度有关以此来测定湿度;利用水蒸汽能吸收特定波长的红外线来测定空气中的湿度。

氯化锂是一种在大气中不分解、不挥发,也不变质而具有稳定的离子型无机盐类。其吸湿量与空气相对湿度成一定函数关系,随着空气相对湿度的增减变化,氯化锂吸湿量也随之变化。当氯化锂溶液吸收水汽后,使导电的离子数增加,因此导致电阻的降低;反之,则使电阻增加。这种将空气相对湿度转换为其电阻值的测量方法称为吸湿法湿度测量。氯化锂电阻湿度计的传感器就是根据这一原理工作的。

湿度传感器从测量的湿度范围可以分为高湿型(大于70%RH)、低湿型(小于40%RH)、全湿型(0~100%RH);根据敏感方案是否基于水分子的极性吸附特性,可以把湿度传感器分为水分子亲和力型和非水分子亲和力型。根据湿敏材料的不同可以对水分子亲和力型湿度传感器进一步分类;根据测量原理的不同可以对非水分子亲和力型湿度传感器进一步分类。

1、水分子亲和力型湿度传感器

根据使用材料的不同,水分子亲和力型湿度传感器分为以下四类

1)电解质型:以氯化锂为例,它在绝缘基板上制作一对电极,涂上氯化锂盐胶膜。氯化锂极易潮解,并产生离子导电,随湿度升高而电阻减小。

2)陶瓷型:一般以金属氧化物为原料,通过陶瓷工艺,制成一种多孔陶瓷。利用多孔陶瓷的阻值对空气中水蒸气的敏感特性而制成。

3)高分子型:在绝缘基板上通过涂覆或者旋转涂膜仪附上一层有机高分子感湿膜制备成湿敏元件。其基本特点是材料来源广泛、制作工艺简单、无需加热清洗、适于批量生产,应用范围广,实用性强。另外,其性能优异,可用于较宽湿度范围的测量,湿滞回差小、响应速度快、温度系数小、使用寿命长。在高分子型湿度传感器的研究领域,聚合物电解质由于其特殊的一些优点比如:容易加工、价格低廉、响应快而且灵敏度高而被研究者在过去的几年中广泛关注。然而其不足之处是由于其在水中的可溶性而使其在应用时在高湿度下会影响其湿敏性质。

4)单晶半导体型:所用材料主要是硅单晶,利用半导体工艺制成。制成二极管湿敏器件和MOSFET湿度敏感器件等。其特点是易于和半导体电路集成在一起。

2、非水分子亲和力型湿度传感器

利用潮湿空气和干燥空气的热传导之差来测定湿度,可以制成热敏电阻式湿度传感器;利用微波或超声波在含水蒸汽的空气中传播时,传输损耗的能量与环境空气中的湿度的相关性来测定湿度,可以制成微波或超声波湿度传感器;利用水蒸汽能吸收特定波长的红外线来测定空气中的湿度,可以制成红外吸收式湿度传感器。

从湿度的敏感材料的不同可分为:半导体氧化物、高分子材料、多孔的有机或无机材料等。湿敏元件是最简单的湿度传感器,主要有电阻式和电容式两大类:

湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电阻的优点是灵敏度高,缺点则是线性度和产品的互换性差。湿敏电阻的种类很多,例如金属氧化物湿敏电阻、硅湿敏电阻、陶瓷湿敏电阻等。其湿敏材料以多孔陶瓷种类最多。

湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酞亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。湿敏电容的主要优点是灵敏度高、产品互换性好、响应速度快、湿度的滞后量小、便于制造、容易实现小型化和集成化,其精度一般比湿敏电阻要低一些。

除电阻式、电容式湿敏传感器之外,还有电解质离子型湿敏传感器、重量型湿敏传感器(利用感湿膜重量的变化来改变振荡频率)、石英振子式湿敏传感器、光强型湿敏传感器、声表面波湿敏传感器等。

无论哪种形式的湿敏传感器,其产品的基本形式都是在基片上涂覆感湿材料形成感湿膜。空气中的水蒸气吸附于感湿材料后,引起元件的质量、阻抗、介电常数等参数发生变化,从而制成湿敏元件。因此,传统的湿敏传感器还存在着以下一些问题:

1)长期稳定性差。在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。

2)传感器的互换性差,对气体的选择性也较差。

3)校准和标定的时间长而复杂。因为此类传感器的输出信号通常是非线性的,这使得定标有一定困难。

四、湿度传感器的性能参数

湿度传感器的特性参数主要有:湿度量程、灵敏度、温度系数、响应时间、湿滞回差、感湿特征量-相对湿度特性曲线等。

1)湿度量程:它是指湿度传感器能够较精确测量的环境湿度的最大范围。由于各种湿度传感器所使用的材料及依据的工作原理不同,其特性并不都能适用于0~100%RH的整个相对湿度范围。

2)感湿特征量-相对湿度特性曲线:湿度传感器的输出变量称为其感湿特征量,如电阻、电容等。湿度传感器的感湿特征量随环境湿度的变化曲线,称为传感器的感湿特征量-环境湿度特性曲线,简称为感湿特性曲线。性能良好的湿度敏感器件的感湿特性曲线,应有宽的线性范围和适中的灵敏度。

3)灵敏度:湿度传感器的灵敏度即其感湿特性曲线的斜率。大多数湿度敏感器件的感湿特性曲线是非线性的,因此尚无统一的表示方法。较普遍采用的方法是用器件在不同环境湿度下的感湿特征量之比来表示。

4)湿度温度系数:它定义为在器件感湿特征量恒定的条件下,该感湿特征量值所表示的环境相对湿度随环境温度的变化率因此,环境温度将造成测湿误差。例如,湿度为0.3%RH/℃时,环境的温度变化20℃,将引起6%RH的测湿误差。

5)响应时间:它表示当环境湿度发生变化时,传感器完成吸湿或脱湿以及动态平衡过程所需时间的特性参数。响应时间用时间常数来定义,即感湿特征量由起始值变化到终止值的0.632倍所需的时间。可见,响应时间是与环境相对湿度的起止值密切相关。

6)湿滞回线和湿滞回差:一个湿度传感器在吸湿和脱湿两种情况下的感湿特性曲线不相重复,一般可形成为一回线,这种特性称为湿滞特性;其曲线称为湿滞回线。

我要回帖

更多关于 湿度传感器测量工作原理 的文章

 

随机推荐