4x2+y2=4上一点P到两焦点的距离之和为多少?

2021年中考数学真题汇编—
一.解答题(共30小题)
1.(2021 贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.
(1)求该抛物线的函数表达式;
(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;
(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(xP,yP),当1≤xP≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).
2.(2021 齐齐哈尔)综合与探究
如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C、D两点之间的距离是
(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
3.(2021 绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.
(1)求抛物线的解析式;
(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;
(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.
4.(2021 柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的
(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.
5.(2021 无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.
(1)求二次函数的表达式;
(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;
(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
7.(2021 鄂州)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y(元)与种植面积x(亩)之间满足一次函数关系,且当x=160时,y=840;当x=190时,y=960.
(1)求y与x之间的函数关系式(不求自变量的取值范围);
(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?
(每亩种植利润=每亩销售额﹣每亩种植成本+每亩种植补贴)
8.(2021 广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
9.(2021 河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.
(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;
(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标xM的取值范围.
10.(2021 南京)已知二次函数y=ax2+bx+c的图象经过(﹣2,1),(2,﹣3)两点.
(2)当c>﹣1时,该函数的图象的顶点的纵坐标的最小值是
(3)设(m,0)是该函数的图象与x轴的一个公共点.当﹣1<m<3时,结合函数的图象,直接写出a的取值范围.
11.(2021 娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.
①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;
②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
12.(2021 济宁)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
13.(2021 宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.
(1)求抛物线的表达式;
(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;
(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.
14.(2021 玉林)已知抛物线:y=ax2﹣3ax﹣4a(a>0)与x轴交点为A,B(A在B的左侧),顶点为D.
(1)求点A,B的坐标及抛物线的对称轴;
(2)若直线y=﹣x与抛物线交于点M,N,且M,N关于原点对称,求抛物线的解析式;
(3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点D′在直线l:y=上,设直线l与y轴的交点为O′,原抛物线上的点P平移后的对应点为点Q,若O′P=O′Q,求点P,Q的坐标.
15.(2021 荆门)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
16.(2021 盐城)已知抛物线y=a(x﹣1)2+h经过点(0,﹣3)和(3,0).
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
17.(2021 盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.
试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.
如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).
(1)点P1旋转后,得到的点P1′的坐标为
(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.
如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.
如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
18.(2021 济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.
(1)求抛物线的解析式;
(2)求证:OE⊥AB;
(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.
19.(2021 荆门)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C(0,﹣3),点Q为线段BC上的动点.
(1)求抛物线的解析式;
(3)过点Q作PQ∥AC交抛物线的第四象限部分于点P,连接PA,PB,记△PAQ与△PBQ面积分别为S1,S2,设S=S1+S2,求点P坐标,使得S最大,并求此最大值.
20.(2021 荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
(2)直接写出点E的坐标(用含t的式子表示);
(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.
21.(2021 聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
(1)求抛物线的表达式和AC所在直线的表达式;
(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.
随州)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
23.(2021 衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.
(1)求桥拱顶部O离水面的距离.
(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.
①求出其中一条钢缆抛物线的函数表达式.
②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.
24.(2021 十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=,且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:
(1)填空:m与x的函数关系为
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(n<4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.
25.(2021 十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.
(1)求抛物线的解析式;
(2)如图1,当tan∠ACM=2时,求M点的横坐标;
(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.
26.(2021 随州)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).
(1)直接写出抛物线的解析式;
(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;
(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.
27.(2021 宜昌)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).
(2)求k1,k2的值(用含n的代数式表示)
(3)当﹣4≤n≤4时,探究k1与k2的大小关系;
(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.
28.(2021 河北)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.
(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;
(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;
(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?
[注:(2)中不必写x的取值范围]
29.(2021 达州)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.
(1)写出工厂每天的利润W元与降价x元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
(2)当降价多少元时,工厂每天的利润最大,最大为多少元?
(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
(1)求抛物线的对称轴;
(2)把抛物线沿y轴向下平移3|a|个单位,若抛物线的顶点落在x轴上,求a的值;
(3)设点P(a,y1),Q(2,y2)在抛物线上,若y1>y2,求a的取值范围.
2021年中考数学真题汇编—
一.解答题(共30小题)
1.(2021 贺州)如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.
(1)求该抛物线的函数表达式;
(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;
(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(xP,yP),当1≤xP≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).
【分析】(1)把A点代入抛物线,再由对称轴公式可得解析式.
(2)过点C作CE⊥x轴于点E,得AE=CE,设点C的横坐标为xc,则纵坐标为yc=xc+1,把点C代入抛物线得C的坐标.
(3)有对称可得D的坐标,即可求出CD=8,设△PCD以CD为底边的高为h,则h=|yp|+7,当|yp|取最大值时,△PCD的面积最大,分情况讨论,①当1≤a≤2时,1≤xp<2,此时y=x2﹣4x﹣5在1≤xp≤a上y随x的增大而减小,|yp|max=|a2﹣4a﹣5|=5+4a﹣a2,△PCD的最大面积为Smax=×CD×h=48+16a﹣4a2,
【解答】解:(1)抛物线过A(﹣1,0),对称轴为x=2,
∴抛物线表达式为y=x2﹣4x﹣5;
(2)过点C作CE⊥x轴于点E,
设点C的横坐标为xc,则纵坐标为yc=xc+1,
代入y=x2﹣4x﹣5得,
解得xc=﹣1(舍去),xc=6,
∴点C的坐标是(6,7);
(3)由(2)得C的坐标是(6,7),
∴点D的坐标是(﹣2,7),
∵CD与x轴平行,点P在x轴下方,
设△PCD以CD为底边的高为h,
∴当|yp|取最大值时,△PCD的面积最大,
①当1≤a<2时,1≤xp≤2,此时y=x2﹣4x﹣5在1≤xp≤a上y随x的增大而减小,
∴△PCD的最大面积为:
②当2≤a≤5时,此时y=x2﹣4x﹣5的对称轴x=2含于1≤xp<a内,
综上所述:当1≤a≤2时,△PCD的最大面积为48+16a﹣4a2;
当2≤a≤5时,△PCD的最大面积为64.
【点评】本题考查二次函数的综合运用,涉及到的相关知识点有代入法求解析式,抛物线与直线的相交求交点坐标,二次函数的性质,解本题的关键是掌握数形结合思想和二次函数的性质.
2.(2021 齐齐哈尔)综合与探究
如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
(1)求抛物线的解析式;
(2)抛物线上C、D两点之间的距离是
(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
【分析】(1)先由题意得出A,B的坐标,再用待定系数法求出解析式即可;
(2)根据两点的距离公式即可求出CD的长度;
(3)先设出E的坐标,然后将△BCE的面积表示出来,求出最大值即可;
(4)根据对角线的情况分三种讨论,再由矩形的性质求出点Q的坐标.
【解答】解:(1)∵OA=1,
将A,B代入解析式得:
(2)由(1)得:C(0,),D(2,),
(3)∵B(5,0),C(0,),
∴直线BC的解析式为:,
作EF∥y轴交BC于点F,
当x=时,S△BCE有最大值为;
(4)设P(2,y),Q(m,n),
由(1)知B(5,0),C(0,),
若BC为矩形的对角线,
∴Q(3,)或Q(3,4),
若BP为矩形得对角线,
若BQ为矩形的对角线,
综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).
【点评】本题主要考查二次函数的综合应用,其中求解析式是基础,一般用待定系数法即可,像求三角形面积问题都用的是切割法,有固定的公式,记住即可,对于特殊四边形的题,要根据对角线的情况分类讨论.
3.(2021 绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.
(1)求抛物线的解析式;
(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;
(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.
【分析】(1)运用待定系数法即可求得答案;
(2)分两种情况:①当DN=DB时,根据抛物线的对称性即可求得答案,②当DN=BN时,方法一:N在BD的垂直平分线上,BD的垂直平分线交BD于I,交x轴于点Q,BD与y轴交点为K,利用三角函数得出sin∠IQB==,运用待定系数法求得yQI=,通过解方程组即可求得答案;方法二:过点N作DS⊥NT交NT于点S,设N(a,﹣a2﹣4a+5),D(﹣2,9),运用两点间距离公式即可求出答案;
(3)在AE上取一点F,作AF的垂直平分线交x轴于点M,连接MF,则AM=MF,在AO上M点的右侧作FG=MF,过点F作FP垂直于x轴于点P,过点H作HR垂直于x轴于点R,证明△FPG∽△HRG,设F(m,﹣﹣),则OP=﹣m,PF=m+,运用勾股定理即可求解.
【解答】解:(1)将A(﹣5,0),B(1,0)代入抛物线y=ax2+bx+5(a≠0)得:
∴抛物线的解析式为:y=﹣x2﹣4x+5;
(2)∵D(﹣2,9),B(1,0),点N是抛物线上的一点且△BDN是以DN为腰的等腰三角形,
①当DN=DB时,根据抛物线的对称性得:A与N重合,
②方法一:当DN=BN时(如图1),N在BD的垂直平分线上,
BD的垂直平分线交BD于I,交x轴于点Q,BD与y轴交点为K,
∵I是BD的中点,BD=3,
∴Q(﹣14,0),I(,)
N2(,),N3(,),
设N(a,﹣a2﹣4a+5),D(﹣2,9),
把a=代入﹣a2﹣4a+5=﹣()2﹣4()+5=,
∴N2(,),N3(,),
综上所述,N1(﹣5,0),N2(,),N3(,);
(3)如图1,在AE上取一点F,作AF的垂直平分线交x轴于点M,连接MF,则AM=MF,在AO上M点的右侧作FG=MF,
移动F点,当HG=2FG时,点F为所求.
过点F作FP垂直于x轴于点P,过点H作HR垂直于x轴于点R,
∵B(1,0),D(﹣2,9),
把H代入上式并解得:m=﹣,
再把m=﹣代入y=﹣x﹣得:y=﹣,
【点评】本题是二次函数综合题,考查了待定系数法求一次函数和二次函数解析式,等腰三角形性质,相似三角形的判定和性质,三角函数定义,勾股定理等,熟练掌握待定系数法,相似三角形的判定和性质等相关知识,正确添加辅助线是解题关键.
4.(2021 柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).
(1)求抛物线的函数解析式;
(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的
(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.
【分析】(1)交x轴于A(﹣1,0),B(3,0)两点,设二次函数的交点式y=a(x+1)(x﹣3),代入C(0,﹣)可得解析式.
(2)BE=2OE,设OE为x,BE=2x,由勾股定理得∴OE=,BE=,过点E作TF平行于OB,根据相似三角形的判定得△ETO∽△OEB,有相似比的性质得出3TE=,解出E的坐标为(,﹣),直线OE的解析式为y=﹣2x,直线OE与抛物线于点D,联立方程得D的坐标.
(3)根据==,设直线BC的解析式为y=kx+b,将B,C两点代入得,直线BC的解析式为y=x﹣,当x=﹣1时,得F坐标为(﹣1,﹣2),设M(x,x2﹣x﹣),MT=﹣(x﹣)2+,根据二次函数的性质得出,MTmax=,即可解出===的最值.
【解答】解:(1)依题意,设y=a(x+1)(x﹣3),
代入C(0,﹣)得:a 1 (﹣3)=﹣,
∴y=(x+1)(x﹣3)=x2﹣x﹣;
解得:x1=,x2=﹣(舍),
过点E作TF平行于OB,
∴直线OE的解析式为y=﹣2x,
∵OE的延长线交抛物线于点D,
解得:x1=1,x2=﹣3(舍),
当x=1时,y=﹣2,
(3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MD⊥BF于点D,
设直线BC的解析式为y=kx+b,将B,C两点代入得,
∴直线BC的解析式为y=x﹣,
当x=﹣1时,y= (﹣1)﹣=﹣2,
设M(x,x2﹣x﹣),
∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,
【点评】本题考查二次函数的应用,涉及到了勾股定理,二次函数的性质,待定系数法,相似三角形的判定与性质,综合性较强,难度系数大,数形结合思想是解本题的关键.
5.(2021 无锡)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.
(1)求二次函数的表达式;
(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;
(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.
【分析】(1)由y=﹣x+3得B(3,0),C(0,3),代入y=ax2+2x+c即得二次函数的表达式为y=﹣x2+2x+3;
(2)由y=﹣x2+2x+3得A(﹣1,0),OB=OC,AB=4,BC=3,故∠ABC=∠MFB=∠CFE=45°,以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,设E(m,﹣m2+2m+3),则F(m,﹣m+3),EF=﹣m2+3m,CF=m,①△ABC∽△CFE时,=,可得EF=,②△ABC∽△EFC时,=,可得EF=;
(3)连接NE,由点N、F关于直线EC对称,可得CF=EF=CN,故﹣m2+3m=m,解得m=0(舍去)或m=3﹣,即得CN=CF=m=3﹣2,N(0,3+1).
【解答】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,
∴B(3,0),C(0,3),
∴二次函数的表达式为y=﹣x2+2x+3;
∵B(3,0),C(0,3),
∴以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,
①△ABC∽△CFE时,=,
解得m=或m=0(舍去),
②△ABC∽△EFC时,=,
解得m=0(舍去)或m=,
(3)连接NE,如图:
∵点N、F关于直线EC对称,
∴﹣m2+3m=m,解得m=0(舍去)或m=3﹣,
【点评】本题考查二次函数的综合应用,涉及解析式、三角形相似的判定与性质、对称变换等知识,解题的关键是用含字母的代数式表示相关的线段长度,根据已知列方程求解.
(1)求该二次函数的解析式;
(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.
【分析】(1)令4x﹣12=2x2﹣8x+6,解之可得交点为(3,0),则二次函数图象必过(3,0),又过(﹣1,0),则把两点坐标代入解析式可得y=ax2﹣2ax﹣3a,又ax2﹣2ax﹣3a≥4x﹣12,整理可得ax2﹣2ax﹣4x+12﹣3a≥0,所以a>0且△≤0,则可得a=1,从而求得二次函数解析式;
(2)由题意可得A(3,0),C(0,﹣3),设点M坐标为(m,m2﹣2m﹣3),N(n,0).根据对角线的不同可分三类情况建立方程组讨论求解即可:①AC为对角线则有;②AM为对角线则有;③AN为对角线则有.
【解答】解:(1)不妨令4x﹣12=2x2﹣8x+6,解得:x1=x2=3,
∴a=1,b=﹣2,c=﹣3.
∴该二次函数解析式为y=x2﹣2x﹣3.
(2)存在,理由如下:
令y=x2﹣2x﹣3中y=0,得x=3,则A点坐标为(3,0);
令x=0,得y=﹣3,则点C坐标为(0,﹣3).
设点M坐标为(m,m2﹣2m﹣3),N(n,0),
根据平行四边对角线性质以及中点坐标公式可得:
①当AC为对角线时,,
即,解得:m1=0(舍去),m2=2,
∴n=1,即N1(1,0).
②当AM为对角线时,,
即,解得:m1=0(舍去),m2=2,
∴n=5,即N2(5,0).
③当AN为对角线时,,
即,解得:m1=1+,m2=1﹣,
∴N3(,0),N4(﹣2﹣,0).
综上所述,N点坐标为(1,0)或(5,0)或(,0)或(﹣2﹣,0).
【点评】本题考查了待定系数法求二次函数解析式,二次函数与坐标轴的交点坐标,平行四边形的判定与性质,二次函数与一元二次方程的联系,根的判别式,对于平行四边形的存在性要注意分类讨论求解.
7.(2021 鄂州)为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y(元)与种植面积x(亩)之间满足一次函数关系,且当x=160时,y=840;当x=190时,y=960.
(1)求y与x之间的函数关系式(不求自变量的取值范围);
(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?
(每亩种植利润=每亩销售额﹣每亩种植成本+每亩种植补贴)
【分析】(1)根据已知条件用待定系数法求一次函数的解析式即可;
(2)根据题意写出利润关于种植面积的解析式,然后根据x≤240,根据二次函数的性质求出利润的最大值.
【解答】解:(1)设y与x之间的函数关系式y=kx+b(k≠0),
∴y与x之间的函数关系式为y=4x+200;
(2)设老张明年种植该作物的总利润为W元,
∴当x<260时,W随x的增大而增大,
由题意知:x≤240,
答:种植面积为240亩时总利润最大,最大利润268800元.
【点评】本题考查二次函数在实际生活中的应用以及用待定系数法求一次函数的解析式,关键是根据题意列出二次函数的解析式.
8.(2021 广东)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价50元时,每天可售出100盒;每盒售价提高1元时,每天少售出2盒.
(1)求猪肉粽和豆沙粽每盒的进价;
(2)设猪肉粽每盒售价x元(50≤x≤65),y表示该商家每天销售猪肉粽的利润(单位:元),求y关于x的函数解析式并求最大利润.
【分析】(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,根据商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同列出方程,解方程即可;
(2)由题意得,当x=50时,每天可售出100盒,当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,列出每天销售猪肉粽的利润y与猪肉粽每盒售价x元的函数关系式,根据二次函数的性质及x的取值范围求利润的最大值.
【解答】解:(1)设猪肉粽每盒进价a元,则豆沙粽每盒进价(a﹣10)元,
解得:a=40,经检验a=40是方程的解,
∴猪肉粽每盒进价40元,豆沙粽每盒进价30元,
(2)由题意得,当x=50时,每天可售出100盒,
当猪肉粽每盒售价x元(50≤x≤65)时,每天可售[100﹣2(x﹣50)]盒,
∵x<70时,y随x的增大而增大,
∴当x=65时,y取最大值,最大值为:﹣2(65﹣70)2+1800=1750(元).
答:y关于x的函数解析式为y=﹣2x2+280x﹣8000(50≤x≤65),且最大利润为1750元.
【点评】本题考查了二次函数的应用以及分式方程的解法,关键是根据题意列出每天销售猪肉粽的利润y与猪肉粽每盒售价x元的函数关系式.
9.(2021 河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.
(2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;
(3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标xM的取值范围.
【分析】(1)用待定系数法即可求解;
(2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;
(3)分类求解确定MN的位置,进而求解.
【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,
将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;
(2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,
联立上述两个函数表达式并解得(不合题意的值已舍去),
即点B的坐标为(﹣1,3),
的解集为x<﹣1或x>2;
(3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,
∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤xM<2;
当点M在点B的左侧时,线段MN与抛物线没有公共点;
当点M在点A的右侧时,当
xM=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即xM=3时,线段MN与抛物线只有一个公共点,
【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.
10.(2021 南京)已知二次函数y=ax2+bx+c的图象经过(﹣2,1),(2,﹣3)两点.
(2)当c>﹣1时,该函数的图象的顶点的纵坐标的最小值是
(3)设(m,0)是该函数的图象与x轴的一个公共点.当﹣1<m<3时,结合函数的图象,直接写出a的取值范围.
【分析】(1)把已知点代入解析式,两式联立即可求出b的值;
(2)把a用c表示,然后写出顶点的纵坐标,根据c的取值即可求出最小值;
(3)根据题意m是方程ax2+bx+c=0的一个根,将m用a表示出来,根据m的取值即可求出a的取值.
【解答】解:(1)把(﹣2,1),(2,﹣3)代入y=ax2+bx+c中,
两式相减得﹣4=4b,
(2)把b=﹣1代入①得:1=4a+2+c,
下面证明对于任意的正数,a,b,都有a+b≥,
∴a+b,当a=b时取等号,
∴该函数的图象的顶点的纵坐标的最小值是
(3)由题意得:am2﹣m+c=0,
则经过(﹣2,1),(2,﹣3),(m,0)的二次函数的图象开口向下,
则经过(﹣2,1),(2,﹣3),(m,0)的二次函数的图象开口向上,
【点评】本题主要考查二次函数的图象与性质,关键在于理解二次项系数a对函数图象的影响,包括开口方向和开口大小,都要熟记于心,不然第三问很难做出来.
11.(2021 娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.
①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;
②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
【分析】(1)由交点式结合点A、B坐标求出解析式,从而得到b、c;
(2)①设点P、Q的坐标,把PQ线段用含有m的式子表示,借助二次函数求出P点到直线l:y=x的距离最大时的m的值;
②利用平行四边形的判定定理“一组对边平行且相等的四边形是平行四边形”和菱形的判定定理“邻边相等的平行四边形是菱形”结合点坐标求解.
【解答】解:(1)由二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),得:
∴b=﹣2,c=﹣3.
(2)①∵点P(m,n)在抛物线上y=x2﹣2x﹣3,
∵过P作x轴的垂线交直线l:y=x于点Q,
设点P到直线y=x的距离为h,
∵直线y=x是一三象限的角平分线,
∴当P点到直线l:y=x的距离最大时,PQ取得最大值,
∴当m=时,PQ有最大值,
∴当P点到直线l:y=x的距离最大时,m的值为.
②∵抛物线与y轴交于点C,
∴x=0时,y=﹣3,
∵OC∥PQ,且以点O、C、P、Q为顶点的四边形是菱形,
解得:m1=0,m2=3,m3=,m4=,
当m1=0时,PQ与OC重合,菱形不成立,舍去;
当m2=3时,P(3,0),Q(3,3),
此时,四边形OCPQ是平行四边形,OQ=,
∴OQ≠OC,平行四边形OCPQ不是菱形,舍去;
当m3=时,Q(,),
此时,四边形OCQP是平行四边形,CQ=,
∴CQ≠OC,平行四边形OCPQ不是菱形,舍去;
当m4=时,Q(,),
此时,四边形OCQP是平行四边形,CQ=,
∴CQ≠OC,平行四边形OCPQ不是菱形,舍去;
综上所述:不存在m,使得以点O、C、P、Q为顶点的四边形是菱形.
【点评】本题主要考查二次函数的性质,线段长度的最大值求解,和菱形存在性问题.在求线段的最大值时需要先设出点的坐标,再表示出线段的长度,最后结合二次函数求出最大值;在探究菱形存在性问题时,需要根据菱形的判定定理“邻边相等的平行四边形是菱形”进行探究.
12.(2021 济宁)某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.
(1)求甲、乙两种商品每箱各盈利多少元?
(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?
【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x﹣5)元,根据题意列出方程,解方程即可,分式方程注意验根;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值.
【解答】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x﹣5)元,
根据题意得:+=100,
解得:x=15或x=3(舍去),
经检验,x=15是原分式方程的解,符合实际,
∴x﹣5=15﹣5=10(元),
答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;
(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,
当a=5时,函数有最大值,最大值是2000元,
答:当降价5元时,该商场利润最大,最大利润是2000元.
【点评】本题考查二次函数的应用和分式方程的应用,关键是根据题意列出函数关系式.
13.(2021 宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.
(1)求抛物线的表达式;
(2)如图①,若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;
(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH为等腰三角形时,求线段PH的长.
【分析】(1)根据两点式可直接求得抛物线表达式;
(2)易证△AOC∽△COB,从而得出∠BAP=45°,结合P点在抛物线上,可求P坐标;
(3)设PH与x轴的交点为Q,P(a,)则H(a,),PH=.分三种情况讨论:①FP=FH,易证∠FPH=∠FHP=∠BHQ=∠BCO,所以tan∠APQ=tan∠BCO=2,即AQ=2PQ,从而可解出P的坐标和PH的长;
②PF=PH,∠CFA=∠PFH=∠PHF=∠BHQ=∠FCO,在Rt△ACF中,可求CF长度,进而求出F坐标,直线AF的解析式,联立抛物线解析式可求a;③HF=HP,由∠AFC=∠PFH=∠PHF,易证AP平分∠CAB,过C作CE∥AB交AP于E,则CE=AE=,进而求出E坐标,直线AE的解析式,联立抛物线解析式可求a.
【解答】解:(1)∵A(﹣1,0),B(4,0)是抛物线y=﹣x2+bx+c与x轴的两个交点,且二次项系数a=,
∴根据抛物线的两点式知,y=.
(2)根据抛物线表达式可求C(0,2),即OC=2.
设P(m,n),且过点P作PD⊥x轴于D,则△ADP是等腰直角三角形,
联立①②两式,解得m=6(﹣1舍去),此时n=﹣7,
∴点P的坐标是(6,﹣7).
(3)设PH与x轴的交点为Q,P(a,),
则H(a,),PH=,
解得a=3(﹣1舍去),此时PH=.
若PF=PH,过点F作FM⊥y轴于点M,
将上式和抛物线解析式联立并解得x=(﹣1舍去),
若HF=HP,过点C作CE∥AB交AP于点E(见上图),
联立抛物线解析式,解得x=5﹣(﹣1舍去).
∴当FP=FH时,PH=;
【点评】本题考查两点式求抛物线解析式,三角形相似的性质与判定,等腰三角形的性质,锐角正切值,求直线与抛物线交点,分类讨论方法等,在第三小问中,借助几何图形的特征来求解可以有效降低运算量.
14.(2021 玉林)已知抛物线:y=ax2﹣3ax﹣4a(a>0)与x轴交点为A,B(A在B的左侧),顶点为D.
(1)求点A,B的坐标及抛物线的对称轴;
(2)若直线y=﹣x与抛物线交于点M,N,且M,N关于原点对称,求抛物线的解析式;
(3)如图,将(2)中的抛物线向上平移,使得新的抛物线的顶点D′在直线l:y=上,设直线l与y轴的交点为O′,原抛物线上的点P平移后的对应点为点Q,若O′P=O′Q,求点P,Q的坐标.
【分析】(1)根据题目给出的解析式可直接求出点A,B,D的坐标;
(2)先设出M,N的横坐标,根据原点对称的特点列出关于a的式子,求出即可;
(3)先根据顶点的变化规律写出平移后的抛物线的解析式,然后设出P的坐标(x,y),根据O′P=O′Q列出关于x的式子,算出x即可求出P,Q的坐标.
【解答】解:(1)取y=0,则有ax2﹣3ax﹣4a=0,
解得x1=﹣1,x2=4,
∴A(﹣1,0),B(4,0),
(2)设M的横坐标为x1,N的横坐标为x2,
又∵M,N关于原点对称,
由题意得向上平移后的抛物线解析式为,
∴抛物线向上平移了4个单位,
设P(x,),则Q(x,),
由题意得O'(0,),
∴P(,﹣),Q(,),
∴P(,﹣),Q(,),
综上,P(,﹣),Q(,)或P(,﹣),Q(,).
【点评】本题主要考查二次函数的综合应用,对于求解析式是此题的基础,一般用待定系数法,每一个学生都应该掌握,此题中第二问涉及到中心对称,就要理解中心对称的含义以及在坐标系中点的变化规律,这些知识点都要牢记于心,包括垂直平分线的性质的应用,本题中都有考到.
15.(2021 荆门)某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.
(1)求y关于x的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.
【分析】(1)设y=kx+b,把x=40,y=180和x=70,y=90,代入可得解析式.
(2)根据利润=(售价﹣进价)×数量,得W=(﹣3x+300)(x﹣a),把x=40,W=3600,代入上式可得关系式W=﹣3(x﹣60)2+4800,顶点的纵坐标是有最大值.
(3)根据根据利润=(售价﹣进价)×数量,得W=﹣3(x﹣100)(x﹣20﹣m)(x≤55),其对称轴x=60+>60,0<x≤55时,函数单调递增,只有x=55时周销售利润最大,即可得m=5.
【解答】解:(1)设y=kx+b,由题意有:
所以y关于x的函数解析式为y=﹣3x+300;
(2)由(1)W=(﹣3x+300)(x﹣a),
又由表知,把x=40,W=3600,代入上式可得关系式
所以售价x=60时,周销售利润W最大,最大利润为4800;
(3)由题意W=﹣3(x﹣100)(x﹣20﹣m)(x≤55),
其对称轴x=60+>60,
∴0<x≤55时,W的值随x增大而增大,
∴只有x=55时周销售利润最大,
【点评】本题考查二次函数的应用,解本题的关键理解题意,掌握二次函数的性质和销售问题中利润公式,
16.(2021 盐城)已知抛物线y=a(x﹣1)2+h经过点(0,﹣3)和(3,0).
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
【分析】(1)利用待定系数法确定函数关系式;
(2)根据平移规律“上加下减,左加右减”写出新抛物线解析式.
【解答】解:(1)将点(0,﹣3)和(3,0)分别代入y=a(x﹣1)2+h,得
所以a=1,h=﹣4.
(2)由(1)知,该抛物线解析式为:y=(x﹣1)2﹣4,将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线解析式为:y=(x﹣2)2﹣2或y=x2﹣4x+2.
【点评】本题考查了二次函数图象上点的坐标特征和二次函数图象与几何变换,由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
17.(2021 盐城)学习了图形的旋转之后,小明知道,将点P绕着某定点A顺时针旋转一定的角度α,能得到一个新的点P′,经过进一步探究,小明发现,当上述点P在某函数图象上运动时,点P′也随之运动,并且点P′的运动轨迹能形成一个新的图形.
试根据下列各题中所给的定点A的坐标、角度α的大小来解决相关问题.
如图1,设A(1,1),α=90°,点P是一次函数y=kx+b图象上的动点,已知该一次函数的图象经过点P1(﹣1,1).
(1)点P1旋转后,得到的点P1′的坐标为
(2)若点P′的运动轨迹经过点P2′(2,1),求原一次函数的表达式.
如图2,设A(0,0),α=45°,点P是反比例函数y=﹣(x<0)的图象上的动点,过点P′作二、四象限角平分线的垂线,垂足为M,求△OMP′的面积.
如图3,设A(1,﹣),α=60°,点P是二次函数y=x2+2x+7图象上的动点,已知点B(2,0)、C(3,0),试探究△BCP′的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.
【分析】【初步感知】(1)根据旋转的旋转即可得出答案;
(2)运用待定系数法即可求出答案;
【深入感悟】设双曲线与二、四象限平分线交于N点,通过联立方程组求出点N的坐标,再分两种情况:①当x≤﹣1时,作PQ⊥x轴于Q,证明△PQA≌△P′MA(AAS),再运用三角形面积公式即可求出答案;②当﹣1<x<0时,作PH⊥y轴于点H,同理可得到答案;
【灵活运用】连接AB,AC,将B,C绕点A逆时针旋转60°得B′,C′,作AH⊥x轴于点H,证明△C′AO≌△CAB(SAS),利用待定系数法求出OC′的函数表达式为:y=x,设过P且与B′C′平行的直线l解析式为y=x+b,由于S△BCP′=S△B′C′P,当直线l与抛物线相切时取最小值,再利用一元二次方程根的判别式求解即可.
【解答】解:【初步感知】
(1)如图1,∵P1(﹣1,1),A(1,1),
由旋转可得:P1′A∥y轴,P1′A=2,
故答案为:(1,3);
(2)∵P2′(2,1),
由题意得P2(1,2),
∵P1(﹣1,1),P2(1,2)在原一次函数图象上,
∴设原一次函数解析式为y=kx+b,
∴原一次函数解析式为y=x+;
设双曲线与二、四象限角平分线交于N点,则:
过点P作PQ⊥x轴于Q,连接AP,过点P′作P′M⊥AN于点M,如图2,
∴在△PQA和△P′MA中,
过点P作PH⊥y轴于点H,过点P′作P′M⊥AN于点M,如图3,
在△POH和△OP′M中,
综上所述,△OMP′的面积为.
△BCP′的面积有最小值,
如图4,连接AB,AC,将B,C绕点A逆时针旋转60°得B′,C′,作AH⊥x轴于点H,
∵A(1,﹣),B(2,0),C(3,0),
∴△OAB为等边三角形,此时B′与O重合,即B′(0,0),
连接C′O,∵∠CAC′=∠BAB′=60°,
∴∠CAB=∠C′AB′,
在△C′AO和△CAB中,
∴作C′G⊥y轴于G,
∴C′(,),此时OC′的函数表达式为:y=x,
设过P且与B′C′平行的直线l解析式为y=x+b,
∴当直线l与抛物线相切时取最小值,
设l与y轴交于点T,连接C′T,
∵S△B′C′T=S△B′C′P′,
∴S△BCP′=×B′T×C′G=××=.
【点评】本题考查了待定系数法,一次函数图象和性质,反比例函数图像,二次函数图象和性质,全等三角形判定和性质,等边三角形性质等知识,是中考数学压轴题,综合性强,难度大,熟练掌握一次函数、反比例函数、二次函数的图象和性质,全等三角形判定和性质等相关知识,灵活运用数形结合思想和分类讨论思想是解题关键.
18.(2021 济宁)如图,直线y=﹣x+分别交x轴、y轴于点A,B,过点A的抛物线y=﹣x2+bx+c与x轴的另一交点为C,与y轴交于点D(0,3),抛物线的对称轴l交AD于点E,连接OE交AB于点F.
(1)求抛物线的解析式;
(2)求证:OE⊥AB;
(3)P为抛物线上的一动点,直线PO交AD于点M,是否存在这样的点P,使以A,O,M为顶点的三角形与△ACD相似?若存在,求点P的横坐标;若不存在,请说明理由.
【分析】(1)根据直线y=﹣x+分别交x轴、y轴于点A,B,求出点A、B的坐标,再利用待定系数法即可求得答案;
(2)运用待定系数法求出直线AD的解析式为y=﹣x+3,得出E(1,2),运用三角函数定义得出tan∠OAB=tan∠OEG,进而可得∠OAB=∠OEG,即可证得结论;
(3)运用待定系数法求出直线CD解析式为y=3x+3,根据以A,O,M为顶点的三角形与△ACD相似,分两种情况:①当△AOM∽△ACD时,∠AOM=∠ACD,从而得出OM∥CD,进而得出直线OM的解析式为y=3x,再结合抛物线的解析式为y=﹣x2+2x+3,即可求得点P的横坐标;②当△AMO∽△ACD时,利用=,求出AM,进而求得点M的坐标,得出直线AM的解析式,即可求得答案.
【解答】解:(1)∵直线y=﹣x+分别交x轴、y轴于点A,B,
∴A(3,0),B(0,),
∵抛物线y=﹣x2+bx+c经过A(3,0),D(0,3),
∴该抛物线的解析式为y=﹣x2+2x+3;
∴抛物线的对称轴为直线x=1,
设直线AD的解析式为y=kx+a,将A(3,0),D(0,3)代入,
∴直线AD的解析式为y=﹣x+3,
∵A(3,0),抛物线的对称轴为直线x=1,
∴AC=3﹣(﹣1)=4,
设直线CD解析式为y=mx+n,
∵C(﹣1,0),D(0,3),
∴直线CD解析式为y=3x+3,
①当△AOM∽△ACD时,∠AOM=∠ACD,如图2,
∴直线OM的解析式为y=3x,
结合抛物线的解析式为y=﹣x2+2x+3,得:3x=﹣x2+2x+3,
解得:x1=,x2=,
②当△AMO∽△ACD时,如图3,
过点M作MG⊥x轴于点G,则∠AGM=90°,
设直线OM解析式为y=m1x,将M(1,2)代入,
∴直线OM解析式为y=2x,
结合抛物线的解析式为y=﹣x2+2x+3,得:2x=﹣x2+2x+3,
综上所述,点P的横坐标为±或.
【点评】本题是关于二次函数的综合题,主要考查了二次函数图象和性质,待定系数法求函数解析式,三角函数定义,相似三角形的判定和性质等,是中考数学压轴题,综合性较强,难度较大;熟练掌握待定系数法和相似三角形的判定和性质等相关知识,灵活运用数形结合思想和分类讨论思想是解题关键.
19.(2021 荆门)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,交y轴于点C(0,﹣3),点Q为线段BC上的动点.
(1)求抛物线的解析式;
(3)过点Q作PQ∥AC交抛物线的第四象限部分于点P,连接PA,PB,记△PAQ与△PBQ面积分别为S1,S2,设S=S1+S2,求点P坐标,使得S最大,并求此最大值.
【分析】(1)运用待定系数法设y=a(x+1)(x﹣3),将C(0,﹣3)代入,即可求得答案;
(2)如图1,作点O关于直线BC的对称点O′,连接AO′,QO′,CO′,BO′,由O、O′关于直线BC对称,得出四边形BOCO′是正方形,根据|QA|+|QO′|≥|AO′|,|QO′|=|QO|,得出答案;
(3)运用待定系数法求出直线BC、AC、PQ的解析式,设P(m,m2﹣2m﹣3),联立方程组,得:,求得Q(,),再运用三角形面积公式求得答案.
【解答】解:(1)∵抛物线交x轴于A(﹣1,0),B(3,0)两点,
∴设y=a(x+1)(x﹣3),将C(0,﹣3)代入,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)如图1,作点O关于直线BC的对称点O′,连接AO′,QO′,CO′,BO′,
∵O、O′关于直线BC对称,
∴BC垂直平分OO′,
∴OO′垂直平分BC,
∴四边形BOCO′是正方形,
(3)设直线BC的解析式为y=kx+d,
∵B(3,0),C(0,﹣3),
∴直线BC的解析式为y=x﹣3,
设直线AC的解析式为y=mx+n,
∵A(﹣1,0),C(0,﹣3),
∴直线AC的解析式为y=﹣3x﹣3,
∴直线PQ的解析式可设为y=﹣3x+b,
由(1)可设P(m,m2﹣2m﹣3),代入直线PQ的解析式,
∴直线PQ的解析式为y=﹣3x+m2+m﹣3,
∵P,Q都在第四象限,
∴P,Q的纵坐标均为负数,
由题意,得0<m<3,
即P(,﹣)时,S有最大值.
【点评】本题是二次函数综合题,主要考查了二次函数图象和性质,待定系数法求函数解析式,将军饮马的最值问题,利用二次函数求最值等,熟练掌握二次函数图象和性质等相关知识,运用数形结合思想是解题关键.
20.(2021 荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
(2)直接写出点E的坐标(用含t的式子表示);
(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.
【分析】(1)证明△OAC≌△OBE(SAS),则∠OBE=∠OAC=45°,进而求解;
(2)∠EBH=45°,则BH=EH=BE=t,即可求解;
(3)由△POA的面积=×AO×yP=×1×yP==,求出yP=1=c﹣,而抛物线过点A(1,0),故a+b+c=0,进而求解.
【解答】解:(1)直线y=﹣x+1与x轴、y轴分别交于A,B两点,
则点A、B的坐标分别为(1,0)、(0,1),
(2)①当点C在线段AB上时,如图1﹣1,
过点E作EH⊥OB于点H,
故点E的坐标为(﹣t,1﹣t);
②当点C在线段BA的延长线上时,如图1﹣2,
同理可得,点E的坐标为(t,1+t);
综上,点E的坐标为(﹣t,1﹣t)或(t,1+t);
(3)①当点C线段AB上时,如题图1﹣1,
过点C作CN⊥OA于点N,
当t=时,即AC=t=,
解得yP=1=c﹣①,
∵抛物线过点A(1,0),故a+b+c=0②,
∴抛物线的表达式为y=﹣x2+4x﹣3;
②抛物线过点A,则a+b+c=0,
联立上述两式并解得:,
故抛物线的表达式为y=a(x﹣2)2﹣a(a<0),
则点P的坐标为(2,﹣a),
【点评】本题是二次函数综合题,主要考查了一次函数的性质、正方形的性质、三角形全等、解直角三角形、面积的计算等,其中(1),确定△OAC≌△OBE是解题的关键.
21.(2021 聊城)如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.
(1)求抛物线的表达式和AC所在直线的表达式;
(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上?若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;
(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求的值最大时点P的坐标.
【分析】(1)利用待定系数法可求得函数的表达式;
(2)抛物线的表达式为y=,点B坐标为(﹣4,0).可证明△AOC∽△COB.继而可证AC⊥BC,则将△ABC沿BC所在直线折叠,点D一定落在直线AC上,延长AC至D,使DC=AC,过点D作DE⊥y轴交y轴于点E,可证△ACO≌△DCE,可得D坐标.则可判断D点是否在抛物线对称轴上;
(3)分别过A、P作x轴的垂线,利用解析式,用同一个字母m表示出P,N的坐标,进而用m表示出的值,根据二次函数的性质可以确定出的最大值,进而可确定出此时的P点坐标.
【解答】解:(1)∵抛物线y=ax2+x+c过点A(1,0),C(0,﹣2),
∴抛物线的表达式为y=.
设直线AC的表达式为y=kx+b,则
∴直线AC的表达式为y=2x﹣2.
(2)点D不在抛物线的对称轴上,理由是:
∵抛物线的表达式为y=,
∴点B坐标为(﹣4,0).
∴将△ABC沿BC所在直线折叠,点D一定落在直线AC上,
延长AC至D,使DC=AC,过点D作DE⊥y轴交y轴于点E,如图1.
∴DE=AO=1,则点D横坐标为﹣1,
∵抛物线的对称轴为直线x=﹣.
故点D不在抛物线的对称轴上.
(3)设过点B、C的直线表达式为y=px+q,
∵C(0,﹣2),B(﹣4,0),
∴过点B、C的直线解析式为y=.
过点A作x轴的垂线交BC的延长线于点M,点M坐标为(1,﹣),
过点P作x轴的垂线交BC于点N,垂足为H,如图2.
设点P坐标为(m,),则点N坐标为(m,),
若分别以PQ、AQ为底计算△BPQ和△BAQ的面积(同高不等底),
则△BPQ与△BAQ的面积比为,即.
∴当m=﹣2时,的最大值为,此时点P坐标为(﹣2,﹣3).
【点评】本题以二次函数为背景考查了待定系数法求解析式,相似三角形的判定与性质,全等三角形的判定与性质,三角形面积的计算,二次函数中常见辅助线的作法,利用点的坐标表示线段的长度,确定函数最值,关键在于作出垂线段利于用点的坐标表示线段的长度.
随州)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.
(1)直接写出b,c的值;
(2)求大棚的最高处到地面的距离;
(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?
【分析】(1)根据题意可推出点A坐标为(0,1),点B坐标为(6,2),将这两点坐标代入二次函数表达式即可求得b、c的值;
(2)将二次函数一般式化为顶点式,即可求得大棚的最高点;
(3)先求出大棚内可以搭建支架土地的宽,再求需要搭建支架部分的面积,进而求得需要准备的竹竿.
【解答】解:(1)b=,c=1.
可知当x=时,y有最大值,
故大棚最高处到地面的距离为米;
(3)令y=,则有=,
∴大棚内可以搭建支架的土地的宽为6﹣=(米),
∴需要搭建支架部分的土地面积为16×=88(平方米),
故共需要88×4=352(根)竹竿,
答:共需要准备352根竹竿.
【点评】本题主要考查二次函数的应用,不仅要求对二次函数的相关性质很熟练,还要结合具体的实际意义解此类题目.
23.(2021 衢州)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.
(1)求桥拱顶部O离水面的距离.
(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.
①求出其中一条钢缆抛物线的函数表达式.
②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.
【分析】(1)利用待定系数法求函数解析式,然后结合二次函数图象上点的坐标特征计算求解;
(2)①由图像分析右边钢缆所在抛物线的顶点坐标为(6,1),然后利用待定系数法求函数解析式;
②根据题意,列式y2﹣y1利用二次函数的性质求最值.
【解答】解:(1)根据题意可知点F的坐标为(6,﹣1.5),可设拱桥侧面所在二次函数表达式为:y1=a1x2.
∴桥拱顶部离水面高度为6m.
(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1,
将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=,
∴右边钢缆所在抛物线表达式为:y2=(x﹣6)2+1,同理可得左边钢缆所在抛物线表达式为:y3=(x+6)2+1
②设彩带的长度为Lm,
则L=y2﹣y1=(x﹣6)2+1﹣(x2)==,
∴当x=4时,L最小值=2,
答:彩带长度的最小值是2m.
【点评】本题考查二次函数的应用,解决此类型题一般先根据题意设出适当的二次函数表达式(一般式、顶点式或交点式),再结合实际和二次函数的图像与性质进行求解.
24.(2021 十堰)某商贸公司购进某种商品的成本为20元/kg,经过市场调研发现,这种商品在未来40天的销售单价y(元/kg)与时间x(天)之间的函数关系式为:y=,且日销量m(kg)与时间x(天)之间的变化规律符合一次函数关系,如下表:
(1)填空:m与x的函数关系为
 m═﹣2x+144(1≤x≤40且x为整数) ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售1kg商品就捐赠n元利润(n<4)给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.
【分析】(1)根据题意建立一次函数模型,利用待定系数法求解即可;
(2)根据题意找到等量关系式:日销售利润═(销售单价﹣单件成本)×销售量,列出方程,再分情况进行讨论总结即可;
(3)根据题意列出方程,根据二次函数的图像与性质进行求解即可.
【解答】解:(1)由题意可设日销量m(kg)与时间x(天)之间的一次函数关系式为:m═kx+b(k≠0),
将(1,142)和(3,138)代入m═kx+b,有:,
解得k═﹣2,b═144,
故m与x的函数关系为:m═﹣2x+144(1≤x≤40且x为整数);
(2)设日销售利润为W元,根据题意可得:
此时当x═16时,取得最大日销售利润为1568元,
此时当x═21时,取得最大日销售利润W═﹣30×21+2160═1530(元),
综上所述,第16天的销售利润最大,最大日销售利润为1568元;
(3)设每天扣除捐赠后的日销售利润为P,根据题意可得:
∵在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,且x只能取整数,故只要第20天的利润高于第19天,即对称轴要大于19.5
∴n的取值范围是:1.75<n<4,
答:n的取值范围是1.75<n<4.
【点评】本题考查二次函数的应用,解此类型题目首先要根据题意找到等量关系式,列出方程,再结合实际和二次函数的图像与性质进行逐步的分析.
25.(2021 十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.
(1)求抛物线的解析式;
(2)如图1,当tan∠ACM=2时,求M点的横坐标;
(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.
【分析】(1)运用待定系数法将点A(﹣1,0)和B(﹣5,0)代入y=ax2+bx﹣5,解方程组即可得出答案;
(2)如图1,过点A作AF⊥AC交直线CM于点F,过点F作FE⊥x轴于点E,通过△AEF∽△CAO,得出F(﹣7,﹣2),运用待定系数法求出直线CF解析式为y=﹣x﹣5,再结合抛物线y=﹣x2﹣6x﹣5,即可求得答案;
(3)设N(﹣3,n),利用待定系数法求出直线AN解析式为y=nxn,再结合抛物线y=﹣x2﹣6x﹣5,求得M(n﹣5,﹣n2+2n),根据MD=MN,建立方程求解即可.
【解答】解:(1)∵抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),
∴该抛物线的解析式为:y=﹣x2﹣6x﹣5;
(2)在y=﹣x2﹣6x﹣5中,令x=0,则y=﹣5,
如图1,过点A作AF⊥AC交直线CM于点F,过点F作FE⊥x轴于点E,
∴F(﹣11,﹣2),
设直线CF解析式为y=kx+c,
∵C(0,﹣5),F(﹣11,﹣2),
∴直线CF解析式为y=﹣x﹣5,
结合抛物线:y=﹣x2﹣6x﹣5,得:﹣x2﹣6x﹣5=﹣x﹣5,
解得:x1=0(舍),x2=﹣,
∴顶点P(﹣3,4),
设N(﹣3,n),直线AN解析式为y=k1x+c1,
∵A(﹣1,0),N(﹣3,n),
∴直线AN解析式为y=nxn,
结合抛物线y=﹣x2﹣6x﹣5,得:﹣x2﹣6x﹣5=nxn,
解得:x1=﹣1(舍),x2=n﹣5,
如图2,过点M作MG⊥PN于点G,
∴(n﹣4)4=(n2+4)(n﹣4)2,
∵点N在抛物线对称轴上且位于x轴下方,
解得:n1=﹣2(舍),n2=﹣﹣2,
∴N(﹣3,﹣﹣2).
【点评】本题是二次函数综合题,主要考查了待定系数法求一次函数解析式和二次函数解析式,根据抛物线解析式求顶点坐标,相似三角形的判定和性质,勾股定理,解一元二次方程等,熟练掌握待定系数法、相似三角形的判定和性质等相关知识,运用数形结合思想及方程思想,添加辅助线构造相似三角形是解题关键.
26.(2021 随州)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).
(1)直接写出抛物线的解析式;
(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;
(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.
【分析】(1)根据顶点的坐标,设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,求出a即可得出答案;
(2)利用待定系数法求出直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,再运用待定系数法求出直线CP1的解析式为y=2x﹣3,联立方程组即可求出P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,证明△OCE≌△GCF(ASA),运用待定系数法求出直线CF解析式为y=x﹣3,即可求出P2(,﹣);
(3)利用待定系数法求出直线AC解析式为y=﹣3x﹣3,直线BC解析式为y=x﹣3,再分以下三种情况:①当△QMN是以NQ为斜边的等腰直角三角形时,②当△QMN是以MQ为斜边的等腰直角三角形时,③当△QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可.
【解答】解:(1)∵顶点D的坐标为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,
得0=a(﹣1﹣1)2﹣4,
∴该抛物线的解析式为y=x2﹣2x﹣3;
(2)∵抛物线对称轴为直线x=1,A(﹣1,0),
设直线BD解析式为y=kx+e,
∵B(3,0),D(1,﹣4),
∴直线BD解析式为y=2x﹣6,
过点C作CP1∥BD,交抛物线于点P1,
设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,
∴直线CP1的解析式为y=2x﹣3,
结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,
解得:x1=0(舍),x2=4,
过点B作y轴平行线,过点C作x轴平行线交于点G,
∴四边形OBGC是正方形,
设CP1与x轴交于点E,则2x﹣3=0,
在x轴下方作∠BCF=∠BCE交BG于点F,
∵四边形OBGC是正方形,
∵C(0,﹣3),F(3,﹣),
∴直线CF解析式为y=x﹣3,
结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=x﹣3,
解得:x1=0(舍),x2=,
综上所述,符合条件的P点坐标为:P1(4,5),P2(,﹣);
∵A(﹣1,0),C(0,﹣3),
∴直线AC解析式为y=﹣3x﹣3,
∵B(3,0),C(0,﹣3),
∴直线BC解析式为y=x﹣3,
设M(t,t﹣3),则N(t,t2﹣2t﹣3),
①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,
∴Q(﹣t,t﹣3),
解得:t=0(舍)或t=或t=,
∴M1(,﹣),Q1(﹣,﹣);M2(,),Q2(﹣,);
②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,
∴Q(,t2﹣2t﹣3),
解得:t=0(舍)或t=5或t=2,
∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);
③当△QMN是以MN为斜边的等腰直角三角形时,
∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);
综上所述,点M及其对应点Q的坐标为:
M1(,),Q1(﹣,);M2(,﹣),Q2(﹣,﹣);M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).
【点评】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键.
27.(2021 宜昌)在平面直角坐标系中,抛物线y1=﹣(x+4)(x﹣n)与x轴交于点A和点B(n,0)(n≥﹣4),顶点坐标记为(h1,k1).抛物线y2=﹣(x+2n)2﹣n2+2n+9的顶点坐标记为(h2,k2).
(2)求k1,k2的值(用含n的代数式表示)
(3)当﹣4≤n≤4时,探究k1与k2的大小关系;
(4)经过点M(2n+9,﹣5n2)和点N(2n,9﹣5n2)的直线与抛物线y1=﹣(x+4)(x﹣n),y2=﹣(x+2n)2﹣n2+2n+9的公共点恰好为3个不同点时,求n的值.
【分析】(1)令y1=0,得到x值即为A、B的横坐标,
(2)由顶点坐标公式可得顶点的纵坐标.
(3)讨论k1﹣k2=n2﹣5与0比较大小得n的取值范围,即在不同的取值范围内得k1、k2大小.
(4)两点确定一条直线的解析式,直线MN的解析式为:y=﹣x﹣5n2+2n+9.①当直线MN经过抛物线y1,y2的交点时,联立抛物线y1与y2得解析式(5n﹣4)x=﹣5n2﹣2n+9①,联立直线y=﹣x﹣5n2+2n+9与抛物线y2得解析式x2+(4n﹣1)x=0,解得n=,此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,即(5n﹣4)(1﹣4n)=﹣5n2﹣2n+9,该方程判别式Δ<0,②当直线MN与抛物线y1或者与抛物线y2只有一个公共点时,当直线MN与抛物线y1只有一个公共点时,联立直线y=﹣x﹣5n2+2n+9与抛物线y=﹣x2+(n﹣4)x+4n可得,﹣x2+(n﹣3)x+5n2+2n﹣9=0,解得∴n=,由①而知直线MN与抛物线y2公共点的横坐标为x1=0,x2=1﹣4n,x1≠x2,所以此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,联立直线y=﹣x﹣5n2+2n+9与抛物线y1得:﹣x2+(n﹣3)x+5n2+2n﹣9=0,△=21n2+2n﹣27,当n=时,Δ<0,此时直线MN与抛物线y1,y2的公共点只有一个,n≠.
【解答】解:(1)∵y1=﹣(x+4)(x﹣n),
令y1=0,﹣(x+4)(x﹣n)=0,
①当n2﹣5>0时,可得n>2或n<﹣2,
即当﹣4≤n<﹣2或2<n≤4时,k1>k2;
②当n2﹣5<0时,可得﹣2<n<2,
即当﹣2<n<2时,k1<k2;
③当n2﹣5=0,可得n=2或n=﹣2,
即当n=2或n=﹣2时,k1=k2;
(4)设直线MN的解析式为:y=kx+b,
由①﹣②得,k=﹣1,
当直线MN经过抛物线y1,y2的交点时,
当x1=0时,把x1=0代入y1得:y=4n,
把x1=0,y=4n代入直线的解析式得:
此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,
当x2=1﹣4n时,把x2=1﹣4n代入①得:
所以该方程没有实数根;
当直线MN与抛物线y1或者与抛物线y2只有一个公共点时,
当直线MN与抛物线y1=﹣x2+(n﹣4)x+4n只有一个公共点时,
由①而知直线MN与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9公共点的横坐标为x1=0,x2=1﹣4n,
当n=时,1﹣4n≠0,
所以此时直线MN与抛物线y1,y2的公共点恰好为三个不同点,
当直线MN与抛物线y2=﹣x2﹣4nx﹣5n2+2n+9只有一个公共点,

随着高中新课程把极坐标內容列入了选修系列4,因而极坐标的应用又成为高中数学的热点,本文主要介绍圆锥曲线统一的焦半径公式及其在求椭圆和双曲线的离心率时的应用,供大家阅读和参考.

一、圆锥曲线统一的焦半径公式

问题 如图,过抛物线y2=2px(p>0)的焦点F作倾斜角为θ的直线,交抛物线于A、B两点,求FA、FB和AB的长.

对于椭圆和双曲线采用类似的方法,可得下述结果:

将以上三种圆锥曲线所得结果加以整理,可写成统一的形式:

有关圆锥曲线的焦半径的问题一直是高考的热点,利用上述焦半径公式解题,往往可以简化运算,简约思维,优化过程,且能给人耳目一新之感.

二、圆锥曲线统一的焦半径公式的应用

例1 (2010年全国I卷)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且BF=2FD,则C的离心率为 .

点评:本题求椭圆的离心率,由于与焦半径有关,因而利用焦半径长|FB|=ep1-ecosθ和|FD|=ep1+ecosθ解题,可回避复杂运算,从而提高了解题的效率,简化了解题过程.

解:以F为极点,Fx为极轴建立极坐标系(如图),

设双曲线的极坐标方程是ρ=ep1-ecosθ.

点评:本题求双曲线的离心率,原标准答案给出的解法运算量较大.而本文的解法,转化为极坐标的问题,巧用圆锥曲线统一的焦半径方式,简化了运算,充分体现了极坐标的优越性,因此,笔者建议:有关圆锥曲线焦半径的问题,请尽量选用本文介绍的方法.

为使读者能充分认识到极坐标在解题的作用,现将例2高考题的非极坐标解法也介绍如下,供师生对照比较.

说明:从上述解题过程中可知:由于将④和⑤代入运算,显然计算量较大且很麻烦.

如图,设AB的倾斜角为θ,因为kAB=2,所以tanθ=2,而0

点评:本题由于运用了焦半径公式解题,不仅避免了联立直线方程与椭圆方程和所带来的求A、B两点坐标的繁琐运算,而且快速简捷地求得了结果.

综上所述可知:有关圆锥曲线的焦半径问题,是近年来高考必考内容,因此高二师生在复习时要高度重视.

应用圆锥曲线统一的焦半径公式解答有关的高考题,可回避联立直线方程与圆锥曲线方程,解方程组而带来的繁琐运算,极大地简化了求解过程,因此对于这类问题应尽量选用本文方法,优化解题.

由于圆锥曲线统一的焦半径公式在高考中的应用是极其广泛的,因而引导学生学习高中数学新课程选修系列4《坐标系与参数方程》内容,有利于帮助同学们全面理解平面解析几何的知识,有利于培养同学们探索精神和创新意识,有利于弥补高中平面解析几何中原有课程知识点的不足,符合新课程改革关于“以课程标准为指导,以教材为基础,合理使用课本,加强教学研究”的理念要求,对于提高同学们的综合解题水平,对于激发同学们学数学用数学的积极性,对于教师提高教学质量,均颇有益处.

总之,我们要注意极坐标应用的研究,要引导同学们通过专题讲座的探究,使同学们更加热爱数学,对数学产生浓厚的兴趣.

1.设椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1,右准线为l1,若过F1垂直x轴的弦长等于F1到l1的距离,则椭圆的离心率是 (1999年全国高考题)

(提示):将右焦点换成左焦点F2,右准线换成左准线l2则结论不变,以F2为极点,垂直于l2的射线F2x为极轴建立极坐标系如图,则椭圆方程为ρ=ep1-ecosθ由已知得AB弦长的倾角为π2,|AB|=ρ代入二次曲线过极点(焦点)的弦公式为|AB|=2ep|1-e2cos2θ|=2ep|1-e2cos2π2|=2ep=p,所以e=12.)

2.(2010年辽宁理(20)题)设椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,过F点的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,AF=2FB,求椭圆C的离心率.

(作者:于志洪、吴秋芳,江苏省泰州市)

我要回帖

更多关于 象限内两点之间的距离公式 的文章

 

随机推荐