这是什么游戏…y( ˙&#7447芯片;. )耶~

急急急,在线等,求歌名,压抑好几年了,就是找不到,谢谢大家哈y( ˙ᴗ. )耶~_百度知道
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。
急急急,在线等,求歌名,压抑好几年了,就是找不到,谢谢大家哈y( ˙ᴗ. )耶~
急急急,在线等,求歌名,压抑好几年了,就是找不到,谢谢大家哈y( ˙ᴗ. )耶~歌词hello
hellohellohellohow
lowhellohellohellohellohow
您的回答被采纳后将获得:
系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)+提问者悬赏30(财富值+成长值)
我有更好的答案
/zhidao/wh%3D600%2C800/sign=63f407fe1aa8f27ad086e061d950a7b54d6baf3d3c945.jpg" esrc="http://g.hiphotos
是不是南征北战的
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包Gravitational waves from pulsars in the context of magnetic ellipticity (PDF Download Available)
See all >33 ReferencesSee all >4 Figures
36.68National Institute for Space Research, Brazil22.39National Institute for Space Research, Brazil40.55National Institute for Space Research, BrazilAbstractIn one of our previous articles we have considered the role of a time dependent magnetic ellipticity on pulsars' braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than 2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all known pulsars, in particular to what concerns the gravitational waves generation. To do so, as shown in our previous article, we need to know some pulsars' observable quantities such as: periods and their time derivatives, and estimated distances to the Earth. Moreover, we also need to know the pulsars' masses and radii, for which, in here we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at best $h \sim 10^{-28}$. This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars, even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, whether the ellipticity has magnetic origin.Discover the world's research14+ million members100+ million publications700k+ research projectsFigures
Draft version November 1, 2016Preprint typeset using LATEX style emulateapj v. 11/10/09GRAVITATIONAL WAVES FROM PULSARS IN THE CONTEXT OF MAGNETIC ELLIPTICITYJos?eC. N. de Araujo1, Jaziel G. Coelho1and C?esar A. Costa1Draft version November 1, 2016ABSTRACTIn one of our previous articles we have considered the role of a time dependent magnetic ellipticity on pulsars’braking indices and on the putative gravitational waves these objects can emit. Since only nine of more than2000 known pulsars have accurately measured braking indices, it is of interest to extend this study to all knownpulsars, in particular to what concerns the gravitational waves generation. To do so, as shown in our previousarticle, we need to know some pulsars’ observable quantities such as: periods and their time derivatives, andestimated distances to the Earth. Moreover, we also need to know the pulsars’ masses and radii, for which, inhere we are adopting current fiducial values. Our results show that the gravitational wave amplitude is at besth~10-28. This leads to a pessimistic prospect for the detection of gravitational waves generated by these pulsars,even for Advanced LIGO and Advanced Virgo, and the planned Einstein Telescope, whether the ellipticity hasmagnetic origin.Subject headings: pulsars: general – stars: neutron – gravitational waves1. INTRODUCTIONIt is well known that, besides compact binaries, rapidly rotat-ing neutron stars are promising sources of gravitational waves(GWs) which could be detected in a near future by AdvancedLIGO (aLIGO) and Advanced Virgo (AdV), and also by theplanned Einstein Telescope (ET). These sources generate con-tinuous GWs whether they are not perfectly symmetric aroundtheir rotation axis, i.e. if they present some equatorial elliptic-ity.It is worth stressing that the equatorial ellipticity is an ex-tremely relevant parameter since the GW amplitude is directlyproportional to it. Therefore, whether the ellipticity be ex-tremely small, i.e.,??10-5, the GWs amplitude will be alsoextremely small, implying that the detection of such contin-uous GWs generated by pulsars may be unattainable (see deAraujo et al. 2016a,b) with the current technology. For a matterof comparison, some authors argue that an acceptable upperlimit for the ellipticity would be around?~10-6(see, e.g.,Krastev et al. 2008). An important mechanism for producingasymmetries is the development of non-axisymmetric instabili-ties in rapidly rotating neutron stars driven by the gravitationalemission reaction or by nuclear matter viscosity (see, e.g.,Bonazzola et al. 1996, and references therein).We explore, in the present paper, some consequences of anellipticity generated by the magnetic dipole of the pulsars. It iswell known that, for strong magnetic fields (~1012 -1015G),the equilibrium configuration of a neutron star can be distorteddue to the magnetic pressure. Therefore, both rotation andmagnetic filed combined can produce a flattened equilibriumstar. However, star rotation and strong magnetic field are notsufficient for GW emission, other effects must be associated,such as pulsar precession (see, e.g., Zimmermann & Szedenits1979).The main goal of the present paper is to extend our previousstudy into the role of ellipticity of magnetic origin (?B) wasconsidered (de Araujo et al. 2016c). Since in that paper wewere also interested in braking indices, which are until now1Divis~ao de Astrof??sica, Instituto Nacional de Pesquisas Espaciais,Avenida dos Astronautas –010 S~ao Jos?e dos Campos, SP, Braziljcarlos.dearaujo@inpe. jaziel.coelho@inpe. cesar.costa@inpe.braccurately measured for only nine pulsars, we had restrictedthat study exclusively for those very pulsars.However,?Bdoes not depend on the pulsar braking index,maybe it is the other way around. In fact,?Bis mostly associ-ated to both the pulsar period (P) and its time derivative (˙P),for a given value of mass, radius and momentum of inertia.Therefore, it is straightforward to extend the?Bcalculationfor all pulsars with knownPand˙P. Consequently, with?Bin hands, we can calculate the GW amplitudes for all pulsarswith known P,˙P, and their distances to the Earth.To do so this paper is organized as follows. Section 2isdevoted to a brief procedure description which is conductedby a basic set of equations. In Section 3we present how thecalculations are done and discuss the obtained results. And,finally, in Section 4we summarize the main conclusions andremarks about them.2. BASIC EQUATIONSIn de Araujo et al. (2016c) we consider in detail how torelate?BtoPand˙P. In addition, the basic equations used forcalculating the amplitude of the putative GWs generated bypulsars are also presented. All those equations are used to cal-culate the relevant quantities on this present paper. Therefore,here we are only providing the main steps for deriving theserelevant equations.Recall that the equatorial ellipticity is given by (see e.g.,Shapiro & Teukolsky 1983)?=Ixx -IyyIzz,(1)whereIxx,Iyy,Izzare the moment of inertia with respect to therotation axis, z, and along directions perpendicular to it.Regarding the ellipticity of magnetic origin, it was shownby different authors (Bonazzola & Gourgoulhon 1996;Konnoet al. 2000;Regimbau & de Freitas Pacheco 2006) that it isgiven by?B=κB20R4GM 2sin2φ, (2)whereB0is the dipole magnetic field,RandMare the radiusand the mass of the star respectively,φis the angle between thearXiv:v1
[astro-ph.SR]
31 Oct 2016
2 de Araujo, Coelho and Costarotation and magnetic dipole axes, whereasκis the distortionparameter, which depends on both the star equation of state(EoS) and the magnetic field configuration (see e.g. Regimbau& de Freitas Pacheco 2006).Regarding the GW amplitude, one finds in the literature thefollowing equationh2=52Gc3Ir2|˙frot |frot,(3)(see, e.g., Aasi et al. 2014) where one is considering that thewhole contribution to˙frotis due to GW emission. This equationmust be modified to take into account the magnetic braking(see de Araujo et al. 2016a,b). This can be done by writing˙?frot =η˙frot,(4)where˙?frotcan be interpreted as the part of˙frotrelated to theGW emission brake. Consequently, the GW amplitude is givenby?h2=52Gc3Ir2|˙?frot |frot=52Gc3Ir2|˙frot |frotη. (5)On the other hand, the GWs amplitude can also be written asfollowsh=16π2Gc4I?f2rotr(6)(see, e.g., Shapiro & Teukolsky 1983). By combining the twoequations above one can obtain?Bin terms ofP,˙P(observablequantities), ηand I, namely?=s5512π4c5G˙PP3Iη. (7)Still concerningη, as discussed in detail by de Araujo etal. (2016c), it can be also interpreted as the fraction of therotation power (˙Erot) emitted in the form of GWs (˙EGW), oryet, the efficiency for GWs generation. Obviously, part ofthe rotation power is emitted in the form of electromagneticradiation through magnetic dipole emission ( ˙Ed).Also, it is shown in de Araujo et al. (2016c) an useful equa-tion relatingηthw pulsar dipole magnetic field, which is de-rived by recalling that the magnetic brake is related toPans˙P,i.e.?B0sin2φ=3Ic34π2R6P˙P(8)where?B0would be the magnetic field whether the breaking ispurely magnetic. Since pulsars might also emit GWs,B0&?B0is a reasonable assumption. Thus, the equation relatingηto thepulsar dipole magnetic field reads (see de Araujo et al. 2016c,for details)η=1- B0?B0!2.(9)By substituting this last expression into equation 2one obtains?B=3Ic34π2GM 2R2P˙P(1-η)κ. (10)In addition, by combining this equation with equation 7, onehasη=2885I3cGM 4R4˙PP(1-η)2κ2.(11)Fig. 1.— TheP-˙Pdiagram for radio pulsars obtained from the ATNF PulsarCatalog (http://www.atnf.csiro.au/people/pulsar/psrcat/)Fig. 2.— Correlation between the magnetic ellipticity and the period for allpulsars with known P,˙P.Since?andη?1, one can readily obtain the followinguseful equations?B&3Ic34π2GM 2R2P˙Pκ(12)andη&2885I3cGM 4R4˙PPκ2.(13)Now, we are ready to calculate?B,ηand the GW amplitudesfor all pulsars with knownP,˙P, and estimated distances to theEarth, for given values ofM,R,Iandκ. The next section is de-voted to such an issue as well as the corresponding discussionof the results.3. CALCULATIONS AND DISCUSSIONSThe table with the necessary pulsars’ parameters used forthe calculation of?B,ηandhas well as the adopted criteria forthe selection can be found in the Appendix. Fig.. 1is madewith columns 2 and 3 of this very table, in which the pulsars’periods and their corresponding time derivatives (spin-downrate) are shown. Although being a well known diagram, it willbe very useful for the discussions of the subsequent results. Itis easily distinguishable two pulsar population: the millisecondpulsars in the lower left (with periodsP&10-2s), composedby young or recently formed pulsars, and another class ofpulsars with periods 10-1&P&101s, composed probably byolder pulsars which have already depleted a respectful fractionof their rotation power.
Gravitational waves from pulsars in the context of magnetic ellipticity 3Fig. 3.— Ellipticity histogram for the 1964 isolated pulsars with k=10.On the last three columns of Table 1, we present the resultsof our calculations, namely,?B,ηandh. In order to performthese calculations, we also need to provide values forM,R,Iandκ. For the first three parameters, we are adopting fiducialvalues, namely,M=1.4M?,R=10km, andI=1038kg m2.Regarding the distortion parameterκ, as already mentioned,it depends on the EoS and on the magnetic field configura-tion. In particular, we chooseκ=10, but values as high asκ=1000 could be considered, although they are probablyunrealistic (see e.g., Regimbau & de Freitas Pacheco 2006, fora brief discussion).From equation 12, we find that?Bis extremely small (~10-19 -10-15) for the millisecond pulsars of Table 1, even whenan extremely optimistic case in whichκ~1000 is considered.Moreover, the ellipticity distribution assumes values of theorder of~10-10for the slowest pulsars. In fig. 2we presentlog ?BversusPforκ=10 for all pulsars of Table 1. Theellipticity for different values ofκ, since?B∝κ, can be readilyobtained.An interesting histogram can also be made from Table,namely, the number of pulsars forlog ?Bbin (see fig. 3). Itworth noticing the high number of pulsars concentrated around~10-10 (10-8) for k=10 (1000).A similar analysis can be made forηby means of Eq. 13.In fig. 4we presentlog ηversusPforκ=10 for all pulsarsof Table 1. Notice thatηis also extremely small, even if oneconsiderκ=1000. Also, an histogram for the number ofpulsars forlog ηbin can be seen in fig. 5. One may noticea peak in theηhistogram at 10-16 -10-15for the pulsars ofTable 1. As for?B,ηfor different values ofκcan be easilyobtained, sinceη∝κ2. Thus, even forκ=1000 the peak inthe histogram would be around 10-12 -10-11.Before proceeding, it is worth stressing that the two pulsarpopulations aforementioned also clearly appear in figs 2-5.These extremely small values of?Bandηhave very impor-tant consequences as regards the detectability of GWs gener-ated by the pulsars, whether the ellipticity is mainly due to themagnetic dipole of the pulsars themselves.Our calculations show that the GW amplitudes for most ofthese pulsars are at best seven orders of magnitude smallerthan those obtained by assuming the spindown limit, see Fig. 6.Notice that, even considering an extremely optimistic case, thevalue of the ellipticity is at best?B~10-5(for PSR J1846-0258) and the corresponding efficiencyη~10-8. Thus, theGW amplitude even in this case would be four orders of mag-Fig. 4.— Correlation between the efficiency and the period for all pulsarswith known P,˙P.Fig. 5.— Histogram of the efficiencies for the 1964 isolated pulsars withk=10.Fig. 6.— Histogram of the amplitude of GWs for all pulsars with knownP,˙P.nitude lower than the amplitude obtained by assuming thespindown limit (η=1).Since the predicted GW amplitudes are extremely small forall pulsars of Table 1, and thousands of years of observing timewould be needed, even advanced detectors such as aLIGO andAdV, and the planned ET would not be able to detect thesepulsars, whether the ellipticity is of magnetic dipole origin.4. CONCLUSIONS AND FINAL REMARKS
4 de Araujo, Coelho and CostaIn this paper, we extend our previous studies (de Araujoet al. 2016c) in which we considered the role of magneticellipticity on the braking index and on the pulsar distortion. Itis well known that for strong magnetic fields (~1012 -1015G),the equilibrium configuration of a neutron star can be distortedby magnetic tension.Here we consider the role played by the magnetic dipole fieldon the deformation of the known pulsars and its consequencesas regards the generation of GWs. In particular, we obtaineduseful equations, 12 and 13, with which one can calculate?Bandηin terms ofI,M,R,κand the observable quantitiesPand˙P, and distances to the Earth. Moreover, the amplitudes ofGWs can be readily calculated.Regarding the GWs generated by the pulsars, our calcula-tions show that the amplitudes are extremely small, as resultthe prospect for their detection even for aLIGO, AdV, and theplanned ET, would be pessimistic. This conclusion is obvi-ously dependent on the mechanism that generates the ellipticity.Whether there is some other mechanism that could generatesubstantially larger ellipticities the prospects for the detectionof GWs emitted by the pulsars of Table 1could be much lesspessimistic.ACKNOWLEDGMENTSJ.C.N.A thanks FAPESP (2013/26258-4) and CNPq(308983/2013-0) for partial support. J.G.C. acknowledgesthe support of FAPESP (2013/15088-0 and 2013/26258-4).C.A.C. acknowledges PNPD-CAPES for financial support.REFERENCESAasi, J., Abadie, J., Abbott, B. P., et al. 2014, ApJ, 785, 119—. 2016, Phys. Rev. Lett., 116, 241103Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Physical Review Letters,116, 061102Allen, M. P., & Horvath, J. E. 1997, MNRAS, 287, 615Allen, M. P., & Horvath, J. E. 1997, ApJ, 488, 409Archibald, R. F., Kaspi, V. M., Beardmore, A. P., Gehrels, N., & Kennea, J. A.2015, ApJ, 810, 67Archibald, R. F., Gotthelf, E. V., Ferdman, R. D., et al. 2016, ApJl, 819, L16Bhattacharya, D., Wijers, R. A. M. J., Hartman, J. W., & Verbunt, F. 1992,A&A, 254, 198Bonazzola, S., & Gourgoulhon, E. 1996, A&A, 312, 675Bonazzola, S., Frieben, J., & Gourgoulhon, E. 1996, ApJ, 460, 379Chandrasekhar, S., & Fermi, E. 1953, ApJ, 118, 116Chen, W.-C., & Li, X.-D. 2016, MNRAS, 455, L87Coelho, J. G., Marinho, R. M., Malheiro, M., et al. 2014, ApJ, 794, 86Coelho, J. G., Pereira, J. P., & de Araujo, J. C. N. 2016, ApJ, 823, 97de Araujo, J. C. N., Coelho, J. G., & Costa, C. A. 2016a, JCAP, 7, 023de Araujo, J. C. N., Coelho, J. G., & Costa, C. A. 2016b, EPJC, 76, 481de Araujo, J. C. N., Coelho, J. G., & Costa, C. A. 2016c, ApJ, 831, 35Eks,i, K. Y., Andac,, I. C., C, ?k?nto?glu, S., et al. 2016, ApJ, 823, 34Epstein, R. I., & Link, B. 2000, Astrophysics and Space Science Library, 254,95Espinoza, C. M., Lyne, A. G., Kramer, M., Manchester, R. N., & Kaspi, V. M.2011, ApJL, 741, L13Ferrari, A., & Ruffini, R. 1969, ApJl, 158, L71Goldreich, P., & Reisenegger, A. 1992, ApJ, 395, 250Graber, V., Andersson, N., Glampedakis, K., & Lander, S. K. 2015, MNRAS,453, 671Hartman, J. W., Bhattacharya, D., Wijers, R., & Verbunt, F. 1997, A&A, 322,477Hild, S., Abernathy, M., Acernese, F., et al. 2011, Classical and QuantumGravity, 28, 094013Igoshev, A. P., & Popov, S. B. 2014, MNRAS, 444, 1066Igoshev, A. P., & Popov, S. B. 2015, Astronomische Nachrichten, 336, 831Jones, P. B. 1988, MNRAS, 233, 875Konno, K., Obata, T., & Kojima, Y. 2000, A&A, 356, 234Krastev, P. G., Li, B.-A., & Worley, A. 2008, Physics Letters B, 668, 1Landau, L. D., & Lifshitz, E. M. 1975, The classical theory of fieldsLink, B., Franco, L. M., & Epstein, R. I. 1998, ApJ, 508, 838Livingstone, M. A., Kaspi, V. M., Gavriil, F. P., et al. 2007, Astrophysics andSpace Science, 308, 317Lyne, A., Graham-Smith, F., Weltevrede, P., et al. 2013, Science, 342, 598Lyne, A. G., Jordan, C. A., Graham-Smith, F., et al. 2015, MNRAS, 446, 857Lyne, A. G., Pritchard, R. S., & Graham-Smith, F. 1993, MNRAS, 265, 1003Lyne, A. G., Pritchard, R. S., Graham-Smith, F., & Camilo, F. 1996, Nature,381, 497Mukherjee, S., & Kembhavi, A. 1997, ApJ, 489, 928Muslimov, A., & Page, D. 1995, ApJL, 440, L77Ostriker, J. P., & Gunn, J. E. 1969, ApJ, 157, 1395Padmanabhan, T. 2001, Theoretical Astrophysics - Volume 2, Stars andStellar SystemsPalomba, C. 2001, A&A, 367, 525Pandey, U. S., & Prasad, S. S. 1996, A&A, 308, 507Regimbau, T., & de Freitas Pacheco, J. A. 2000, A&A, 359, 242Regimbau, T., & de Freitas Pacheco, J. A. 2001, A&A, 374, 182Regimbau, T., & de Freitas Pacheco, J. A. 2006, A&A, 447, 1Roy, J., Gupta, Y., & Lewandowski, W. 2012, MNRAS, 424, 2213Shapiro, S. L., & Teukolsky, S. A. 1983, Black holes, white dwarfs, andneutron stars: The physics of compact objectsWeltevrede, P., Johnston, S., & Espinoza, C. M. 2011, MNRAS, 411, 1917Wu, F., Xu, R. X., & Gil, J. 2003, A&A, 409, 641Xu, R. X., & Qiao, G. J. 2001, ApJL, 561, L85Yi, S.-X., & Zhang, S.-N. 2015, MNRAS, 454, 3674Zimmermann, M., & Szedenits, E., Jr. 1979, Phys. Rev. D, 20, 351
Gravitational waves from pulsars in the context of magnetic ellipticity 5APPENDIXTable 1presents the periods (P), their first derivatives (˙P), and the estimated distances (d) from Earth of 1964 pulsars drawnfrom the ATNF Pulsar Catalog (http://www.atnf.csiro.au/people/pulsar/psrcat/). Another selection criteria is that the pulsars musthave only an unique measured value for ˙P. It is also presented η,?and hvalues calculated from the appropriate equations whichcan be found in Section 3.TABLE 1 P,˙Pand dfor pulsars drawn from the ATNF catalog, with an unique measuredvalue for ˙P, and the correspondent ?,ηand hfor κ=10.Pulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ0006+1834 0..6778 0.7 -10.1 -33.0943J0007+7303 0..4437 1.4 -8.34 -30.8195J0014+4746 1.2407 -15.2487 1.82 -10.5 -34.3327J0026+358 -15.8239 13.6 -11. -35.1906J0030+0451 0..9914 0.3 -17.6 -35.8858J 0..3036 0.98 -18.3 -36.2985J 0.942951 -15.3893 1.03 -10. -34.1069J0040+5716 1.11823 -14.5406 4.48 -9.83 -33.9706J 0..6038 59.7 -10.9 -34.9109J 0..3507 59.7 -9.76 -34.8236J0048+3412 1.21709 -14.6289 3.68 -9.94 -34.0103J0051+732 -17.1549 0.94 -12. -35.4081J0055+5117 2.11517 -14.0205 2.4 -9.09 -33.4562J0056+4756 0..4776 1 -10.7 -32.8817J 0.738062 -16 2.49 -11.2 -34.9945J 8.02039 -10.7258 59.7 -5.12 -32.1362J 0..2874 0.73 -18.9 -36.2913J0102+6537 1.67916 -14.2255 2.45 -9.37 -33.5699J0106+4855 0..3686 7.33 -11.6 -33.8838J 0..1135 0.21 -11.8 -34.0731J0108+6608 1.28366 -13.8827 1.65 -9.13 -32.9389J0108+6905 1.07112 -16.3179 2.59 -11.8 -35.4912J 0..1494 59.7 -9.64 -34.4935J 0..3134 59.7 -10.6 -34.3326J0117+5914 0..2328 2.14 -10.2 -32.2997J 0..7545 59.7 -10.4 -34.8024J 0.463474 -15.9208 2.42 -11. -34.7009J 0..1057 1.78 -12.4 -34.2229J0137+1654 0..9136 2.51 -12.6 -35.6613J0139+5621 1.77534 -13.1018 5.54 -8.23 -32.8248J0139+5814 0..9706 2.6 -9.81 -32.5511J0141+6009 1.28 2.3 -10.677 -16.7244 -34.5872J0146+6145 8.68899 -11.7011 3.6 -6.13 -31.9266J0147+5922 0..5901 1.91 -11.2 -33.8943J 1.46467 -15.3536 1.93 -10.5 -34.5351J0152+0948 2.76 2.3 -9.5 -34.3003J 0..8861 0.69 -10.7 -33.3756J0156+3949 1.81156 -15.8182 4.85 -10.4 -35.4922J0157+6212 2.35 1.61 -7.70869 -14.J0201+7005 1.34918 -14.2588 1.15 -9.41 -33.1798J0205+716 -12.7122 3.2 -9.2 -30.7652J 0.63055 -14.9208 0.88 -10.7 -33.3952J 1.07733 -15.5376 1.83 -10.1 -34.5626J0212+5222 0..1805 1.91 -9.92 -32.7673J0214+575 -18.5243 1.21 -15. -35.7278J0215+6218 0.54888 -15.1791 3.19 -10.8 -34.1526J0218+4232 0..1113 3.15 -17.5 -35.7058J0231+7026 1.42 2.25 -9.69741 -15.J0248+6021 0..2588 2 -9.26 -31.6267J 0..5143 1.15 -12.4 -34.9562J0304+1932 1.38758 -14.8861 0.95 -10.5 -33.7362J0323+3944 3.03207 -15.1965 2.61 -10.4 -34.8251J0324+5239 0.33662 -15.4191 6.28 -11.4 -34.4744J0329+1654 0.89332 -15.6676 3.35 -11.7 -34.8738J0332+5434 0.71452 -14.6882 1 -10.4 -33.2725J0335+4555 0..1337 2.08 -13.9 -35.6121J0337+1715 0.002733 -19.752 1.3 -17.8 -36.0328J 2.59703 -16.2441 2.22 -11.8 -35.7352J0343+5312 1.93448 -13.8729 2.48 -8.96 -33.2841J0348+0432 0.039123 -18.618 2.1 -15.6 -36.2628J0357+5236 0.19703 -15.3215 4.73 -11.2 -34.0211J0358+5413 0..3565 1 -10.9 -32.2809J 0..8125 1.5 -10.2 -33.4554J0406+6138 0..2541 3.05 -9.85 -33.2429J0407+1607 0..1024 4.07 -16.049 -18.1J0415+6954 0..1158 1.57 -11.8 -34.6337J 0..0114 2.46 -10.8 -34.0117Continued on next page
6 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 2.16131 -14.9355 3.09 -9.94 -34.4904J0426+4933 0..4056 3.6 -8.7972 -14.1J 0..2418 0.16 -16.2 -34.9364J 0..8297 2.87 -11.5 -34.6715J 0.479164 -14.4724 49.7 -10. -34.5794J 0..9872 3.27 -11.8 -34.8734J 0.548939 -14.2403 0.4 -9.8 -32.3121J0453+1559 0..7305 1.83 -14.3 -35.3838J0454+5543 0..6253 1.18 -10.8 -32.9597J 0..9914 49.7 -9.83 -33.9237J 0..4353 49.7 -8.86 -33.7651J 2.49701 -15.6778 2.94 -10.3 -35.2738J 1.88348 -15.2757 3.83 -10.8 -34.8641J 1.13308 -14.8539 1.3 -10.3 -33.7523J0501+4516 5.7621 -11.2351 2.2 -5.88 -31.0683J0502+4654 0..2534 1.78 -9.87 -33.0392J 0..6364 49.7 -9.1533 -14.6J 0..6861 2.17 -11.2 -34.2607J 0..1568 49.7 -11.093 -15.6J 0..5214 3.47 -12.8 -35.1751J 0.674532 -13.752 49.7 -9.22 -34.0076J0525+1115 0..1331 7.68 -11.8 -35.2982J 0..8097 49.7 -9.11 -34.2256J 0..2716 49.7 -9.88 -34.5062J0533+0402 0..7959 6.66 -11.7 -35.3332J0534+2200 0..3757 2 -9.25 -29.9306J 1.81757 -12.3716 49.7 -7.43 -33.0577J 0..9393 49.7 -9.96 -33.668J.24586 -15.248 1.04 -10.509 -16.5726 -34.0907J 0..2857 49.7 -10.2 -31.9197J0538+2817 0..4353 1.3 -10.3 -32.4353J0540+3207 0..3487 2.37 -10.4 -34.1732J 1.28601 -15.0862 2.69 -10.6 -34.3554J0543+2329 0..8125 3.54 -9.75 -32.4826J 0..4045 49.7 -9.93 -34.6817J0546+2441 2.84385 -14.1163 3.16 -9.04 -33.8001J 0..2248 49.7 -9.68 -34.5693J0557+1550 0..1337 5.65 -18.4 -37.0235J 2.26137 -14.556 2.55 -9.55 -34.0471J 0..8861 7.54 -10.9 -34.0913J0609+2130 0..6289 1.82 -15.9 -36.3651J 0..9066 5.64 -17.4 -36.9748J0612+3721 0..2255 1.49 -12.8 -34.6031J 0..0182 1.09 -17.3 -36.2718J0613+3731 0..4895 1.05 -10.4 -33.0327J0614+2229 0.33496 -13.2262 4.74 -9.04 -32.1572J 0.003149 -19.757 1.02 -17.3 -35.9939J0621+0336 0..1403 3.58 -13.7 -35.8556J0621+1002 0..3251 1.88 -16.5 -36.7897J0623+0340 0.61376 -16.0535 2.53 -11.7 -34.9749J 1.03908 -15.0809 4.28 -10.7 -34.4592J0627+0649 0..7696 4 -10.4 -33.6416J0627+0706 0..5258 7.88 -9.24 -32.83J0628+0909 1.24142 -15.2612 4 -10.3 -34.6874J0629+2415 0.476623 -14.699 4.67 -10.3 -33.7767J 0..426 5.57 -9.9 -33.7349J 1.25 0.32 -9.6 -32.4778J0631+1036 0.2878 -12.9788 6.54 -8.8 -31.9837J0633+1746 0..9586 0.25 -9.97 -31.4617J 3.25321 -14.4179 7.84 -9.24 -34.5548J 1.9 0.98 -9.55782 -16.0258 -33.518J0636+869 -20.4711 0.2 -18. -35.9601J0645+5158 0.008853 -20.308 0.77 -17.3 -36.8718J0646+0905 0..1331 9.5 -10.4 -34.7972J0647+0913 1.25 10.84 -9.2 -34.0493J.924054 -15.8182 5.83 -11.209 -17.013 -35.2797J0653+8051 1.21444 -14.4202 3.37 -9.67 -33.7624J 1.25 1.79 -11.842 -17.8907 -35.6446J 0..4962 4.88 -12.2 -35.1777J0658+0022 0..0386 6.46 -9.65 -33.3298J0659+1414 0..2596 0.28 -9.01 -31.0223J0700+671 -18.1643 0.49 -14. -35.8762J 0..8996 4.94 -11.8 -35.0095J0711+0931 1.21409 -15.3979 2.39 -10.3 -34.5908J 0..8268 1.04 -17.6 -36.3137J 0..1379 17.33 -9.59 -34.0958J 8.39112 -13.1561 0.4 -7.51 -32.4122Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 7TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..3565 3.87 -16.2 -36.866J 0..0334 4.68 -11.2 -35.0615J 3.44231 -12.5331 3.01 -7.31 -32.2788J 0..9469 4.37 -8.99 -31.7184J 0.52 3.25 -9.37009 -14.J 1.79625 -14.2441 11.95 -9.36 -34.3061J 0.320366 -14.262 4.3 -10.8 -33.1313J 0.37492 -14.7905 1.6 -10.6 -33.2988J 0..7747 2 -9.99 -32.028J 0..5638 7.14 -10.1 -33.4798J 2.79102 -13.7773 5.71 -8.62 -33.7099J 1.09545 -15.0101 2.36 -10.8 -34.1528J0751+1807 0..1085 0.4 -17.1 -35.9822J0754+3231 1.44235 -14.9666 3.92 -10.8 -34.4491J 0..7905 3.72 -10.6 -33.9252J 2.19199 -14.3757 7.79 -9.37 -34.3383J 0..4225 8.76 -11.2 -34.8167J 0..3969 5.62 -10.7 -34.8145J 0..5114 12.71 -10.7 -34.0839J 0..3478 26.83 -12.5 -36.1902J0814+7429 1.29224 -15.7747 0.43 -11.2 -34.2497J0815+161 -15.857 4.52 -11.4039 -16.J 0..2366 4.17 -10.7 -34.4699J 2.12 3.82 -10.145 -16.6871 -34.7702J 1.27 1.9 -9.6 -33.7774J 0..6126 6.82 -10.1 -33.2729J 1.07357 -13.9136 6.19 -9.26 -33.4664J 0..7235 2.38 -12.4 -35.5671J 0..4584 18.16 -10.1 -34.0462J 0..0325 2.2 -13.9 -35.1574J0823+0159 0..9788 1.44 -11.9 -34.8043J0826+661 -14.767 0.32 -10. -32.7272J 1.84892 -15.0017 0.54 -10.8 -33.7313J 0..8928 12.73 -10.6 -34.2215J.121116 -14.3526 9.74 -10.626 -14.665 -33.1546J 0..0097 2.34 -9.63 -32.8426J 0..9031 0.28 -9.32 -30.0314J0837+0610 1.27377 -14.1675 0.76 -9.47 -32.8836J 0.751624 -14.451 1.5 -9.91 -33.2333J 0..4089 4.56 -12.5 -35.2875J 1.79 8.21 -10.215 -16.5505 -34.9659J.720612 -14.7852 7.77 -10.284 -15.872 -34.2635J 0..0223 8.68 -9.5697 -15.1J 0..7645 7.69 -11.801 -16.7J 1.1161 -14.7959 1.43 -10.7 -33.7291J 5.97749 -12.9208 13.44 -7.55 -33.5559J 0..1018 8.35 -10.8 -34.3195J0849+8028 1.60223 -15.3507 3.38 -10.5 -34.8145J 1.26754 -14.1993 1.21 -9.44 -33.1152J 0.064686 -14.1391 9.9 -10. -32.6757J 0..8665 28.35 -9.43 -33.8089J 0..7747 6.53 -10.2 -34.3032J.326774 -13.6326 6.53 -9.47494 -14.376 -32.692J 0.01111 -19.3089 0.82 -16.8 -35.9987J 0.441995 -13.058 7.46 -8.76 -32.3064J 0..9706 4.44 -11.5 -35.168J 0..7235 4.37 -10.3 -34.0788J 0..3344 4.41 -10.951 -16.1J 0..8268 6.35 -11.8 -35.3547J 0..6038 8.38 -9.44 -32.7967J 0.340854 -15.2823 4.4 -11. -34.1886J 0..7375 2.63 -10.69 -15.8J 0..1746 1.01 -10.5 -33.5129J 0..8182 1 -10.7 -31.5768J 1.36289 -15.4776 4 -10.2 -34.9443J 1.52608 -14.4449 0.62 -9.66 -33.1511J 1.21698 -17 3.54 -12.4 -36.3645J0921+6254 1.55 0.79 -9.6037 -15.867 -33.2657J0922+0638 0..8633 1.1 -9.55 -32.269J 0..0106 10.37 -8.36 -32.7344J 0..4498 5.61 -8.98 -32.8019J 0..3116 1.87 -9.77 -33.1826J 0..3883 3.63 -18.8 -37.3447J 1.93163 -15.6021 3.84 -10.1 -35.2025J 4.39216 -14.0773 3.91 -8.71 -34.0423J 0..5702 3.2 -11.6 -34.5618J 1.45 2.93 -9.5 -33.6894Continued on next page
8 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..4828 4.27 -9.82 -31.7857J 0..9431 5.64 -10.481 -15.2J 0..6402 0.3 -9.1743 -14.9J 0..4023 5.02 -8.89 -32.7407J0943+1631 1.05 1.76 -11. -35.0526J 0..3439 0.69 -11.1 -34.669J 0..3161 2.71 -10.152 -15.8J0946+0951 1.09771 -14.4572 0.96 -9.78 -33.2101J 0..1959 8.68 -10.2 -34.6708J 1.37382 -15.2366 8.44 -10.6 -35.0311J0953+0755 0..6383 0.26 -11.7 -33.1867J 0..3575 6.2 -9.04 -32.5548J 0..4535 4.87 -9.82 -33.8068J..71 7 -10.7578 -15.2478 -33.594J 0..0862 2.96 -11.5 -35.1138J.255677 -15.0182 2.33 -10.967 -15.655 -33.5234J 1.43658 -13.289 0.3 -8.45 -31.6537J 1.66118 -15.0655 3.94 -10.1 -34.6116J 7.73364 -13.2226 3.3 -7.61 -33.3597J 0..8041 17.42 -10.9 -34.6661J 0.713489 -15.983 15.13 -11.5 -35.7464J 0.307072 -13.6556 3.44 -9.5 -32.4096J 0..2418 9.3 -10.1 -34.8626J 2.51795 -15.055 1.29 -10.2 -34.2969J1012+256 -19.767 0.7 -17.4029 -18.J 2.17 5.34 -8.9 -33.2105J 0..752 10.14 -9.19481 -14.J 0..2534 11.32 -10.8 -34.6837J 0.139882 -13.2411 4.87 -9.4 -31.8046J 0..7144 2.5 -10.8 -33.7288J.087834 -15.1561 4.62 -11.569 -15.329 -33.4947J 0..0926 9.31 -9.47 -31.8227J 0..5045 11.78 -10.159 -15.8J 0..6536 0.26 -18.8 -36.1679J 1.85 3.27 -9.8596 -16.245 -34.2606J 0.162499 -13.6968 30 -9.8 -33.115J 1.2383 -13.3925 2.62 -8.65 -32.6339J 0.14048 -14.1713 29.58 -10.1 -33.5202J 0..2725 4.18 -11.7 -35.4499J1022+1001 0..3635 0.74 -16.9 -36.1792J 1.64373 -12.8386 30 -7.96 -33.2618J1023+0038 0..9208 1.37 -18.05 -18.1J 0..7328 1.1 -17.8 -36.2172J 0..7932 2.76 -10.3 -31.9253J 0.306411 -14.7496 30 -10. -34.4432J 2.40762 -13.7471 4.33 -8.79 -33.4954J 0..5229 7.26 -10.7 -33.7807J 1.15059 -15.6383 4.68 -10.3 -35.0996J 0..4559 6.54 -11.2 -34.7648J 0..7825 8.71 -10.5 -34.1606J 0..8665 7.86 -10.7 -34.2192J1038+0032 0..1739 2.36 -16.2 -36.7372J 0..9031 2.43 -10.1 -33.8398J 1.38637 -15.0246 3.18 -10.6 -34.3991J 1.17086 -14.172 6.98 -9.46 -33.8146J 0.288602 -13.983 18.2 -9.84 -33.4335J 0..752 0.34 -17.235 -18.8547 -35.8873J1046+0304 0..9066 2.25 -11.3 -34.5025J 0..9431 4.8 -10.8 -33.9221J 0..2147 4.14 -12.8 -35.0808J 0..7721 4.67 -10.831 -15.3J 0..0164 2.9 -9.28 -31.3012J 2.20233 -14.3556 9.73 -9.36 -34.4168J 6.45208 -10.4191 9 -4.99 -30.9132J 0.180592 -13.699 13.55 -9.78 -32.8178J 0.38383 -15.4123 5.27 -11.6 -34.4484J 0..3904 6.81 -10.8 -33.494J 0..6799 5.81 -11.6 -34.5328J 1.84 -14. -9.5948 -15.997 -34.6294J 0..0343 25.63 -8.41 -33.1499J 0.099661 -13.5302 30 -9.9 -32.736J 0.448635 -15.15 3.64 -10. -34.0932J 2.9194 -13.6925 11.91 -8.59 -33.9639J 0..2396 17.61 -10.7 -35.0455J 0.422447 -14.4461 2.4 -10. -33.1823J 0.02631 -19.2007 5.27 -16.9 -37.0728J 0..6478 3.03 -11.1 -34.6576Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 9TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..2343 1.53 -10.2 -32.4439J 1.3474 -14.8761 3.46 -10.8 -34.2749J 0.61627 -15.1824 7.11 -10.4 -34.5543J 1.185 -14.3665 2.75 -9.64 -33.6098J 0.0628 -14.0675 7 -10.6 -32.4408J 0..7447 7.86 -18.2 -38.0787J 0..4342 3.16 -18.9 -37.1946J 0..0044 6.83 -10.9 -34.1673J 0..7055 2.31 -10.2 -33.2479J 0..8013 7.07 -10.2 -32.1816J 2.76 7.88 -9.5 -34.6936J 0..0453 1.81 -12.2 -35.4359J 1.51653 -15.4685 3.52 -10.5 -34.9261J 1.7994 -12.8069 13.72 -7.9083 -14.6J 0..6861 9.18 -10.1 -34.126J 0..5017 30 -10.5 -32.5217J 0..0841 19.31 -10.2 -34.6241J 0..5467 12.32 -9.99 -34.2816J 0.88082 -13.3363 30 -8.73 -33.4885J1115+5030 1.65644 -14.6038 0.51 -9.71 -33.2608J 0..1409 6.76 -10.6 -33.1156J 0..0996 2.68 -9.4816 -15.6J 0..9031 22.38 -9.56 -33.6865J 1.18 27.12 -10.9137 -16.J 0..3958 8.4 -7.1417 -12.9J 2.2806 -14.4353 1.52 -9.45 -33.7054J 0..5575 15.43 -10.7 -34.2051J 0..1844 8.74 -12.4 -35.245J 0..1898 14.75 -9.73 -33.8951J 0..2798 7.54 -10.7 -33.3211J 0..5607 3.48 -10.1 -33.1998J 0.18556 -17.0458 23.74 -13.4 -36.4199J 0..1232 5 -8.32 -30.6842J 0..2076 14.9 -10.2 -34.7914J 0..2154 2.98 -17.2 -35.9114J 0.09 1.94 -18. -36.8348J 0..5513 8.05 -11.4 -34.4942J 0..4815 2.07 -10.075 -15.7J 0..9586 30 -12.4 -36.8786J 0..7986 9.45 -12.1 -35.7146J 0..0214 8.28 -10.6 -34.5027J.256353 -15.3372 7.14 -11.285 -15.J 0..1675 21.3 -12.1 -35.4695J 1.09 30 -10.6916 -16.J1136+1551 1.18791 -14.4283 0.35 -9.72 -32.7773J 0..0851 2.6 -9.82 -32.7923J 0..1445 19.53 -11.9 -35.9106J 0..9031 24.5 -10.5 -33.0927J 0.538432 -14.7077 2.72 -10. -33.6037J 0..3344 3.84 -11.2 -34.1135J 0..3655 3 -10.1 -33.1682J 0..1085 10.81 -11.5 -35.6194J 0.675646 -15.158 10.68 -10.9 -34.7465J 0..3143 11.44 -10.3 -34.9388J 0..5114 8.88 -8.94 -33.1198J 0.273372 -14.7471 2.59 -10. -33.3274J 3.55994 -13.9547 6.99 -8.73 -34.0808J 3.26 9.07 -9.5 -34.7671J 0..9872 7.65 -10.3 -32.6081J 1.78983 -14.8928 7.87 -9.97 -34.7718J 0.37657 -14.1746 2.09 -9.96 -32.8008J 0.282012 -15.2526 2.06 -11. -33.7469J 0..5768 20.4 -9.49 -33.0766J 1.03793 -14.9914 8.76 -10.7 -34.6803J 0..8447 1.88 -15.2 -36.4884J 0..4056 4 -10.4 -33.3405J 0..6198 6.03 -12.4 -35.9548J 0..5498 4.36 -10.1 -33.6397J 0..4486 30 -10.1 -34.4283J 0..6716 4.94 -10.7 -33.7515J 0..6635 5.66 -11.5 -34.6363J 0..6536 2.6 -12.3 -35.4263J 0.279767 -15.1391 11.65 -11. -34.3824J 4.25 1.58 -10.095 -17.2217 -34.9214J 0..5901 12.3 -11.31 -16.8J 0..2725 4.83 -11.67 -17.6J 0..9393 11.24 -11.2 -35.524Continued on next page
10 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..7747 30 -9.58 -33.5549J 0..7905 1.71 -18.5 -37.3026J 0..0953 13.96 -11.6 -35.8676J 1.08116 -15.8239 2.12 -11.9 -34.9143J 0..6946 23.64 -9.25 -33.5662J.216476 -14.3054 4 -10. -32.9731J 1.01845 -14.6861 5.39 -10.2 -34.1559J 0..5406 6.19 -11.6 -34.8593J 0..0241 24.6 -10.1 -34.7681J 0..9547 2 -18.7 -36.2128J 0..7282 15.82 -15.5 -37.1957J 0..6421 0.45 -17.5 -35.5918J 0..4202 6.16 -11.5 -35.8831J 1.35124 -14.8539 12.12 -10.8 -34.7983J 1.87299 -16.8539 1.4 -11.6 -36.0027J 0..091 10 -14. -36.7671J 0..1599 20.49 -9.79 -33.9535J 0..4112 30 -9.84 -34.4975J 0..7055 27.05 -11.2 -35.2775J 0.29 8.29 -11.694 -16.5055 -34.9251J 2.11097 -14.6596 7.8 -9.62 -34.6063J1238+21 1.11859 -14.8386 1.77 -10.5 -33.8655J1239+2453 1.38245 -15.0177 0.84 -10.5 -33.8129J 1.30191 -13.9245 2.89 -9.12 -33.2301J 0..7595 3.59 -10.1 -33.7542J 0..0969 19.2 -11.3 -35.7836J 0..3468 2 -10.114 -15.4J 0.275207 -15 8.49 -10.8 -34.0988J 0..3565 12.05 -13.545 -17.9J 1.54682 -14.1439 30 -9.35 -34.5406J 2.26 14.63 -8.2 -34.2165J 0..7721 23.99 -9.87 -33.1797J 1.23489 -14.7144 9.55 -9.92 -34.5163J 0..9172 8.51 -12.3 -36.2153J 0..4377 5.22 -11.5 -34.4002J 0..9666 11 -11.3 -35.6538J 0..6778 2.94 -10.3 -33.2837J.184502 -15. -11.2954 -15.7 -33.5513J 0..3979 7.36 -9.93 -33.8132J 0..4401 2.22 -11.7 -34.3072J 0..9172 2.72 -10.452 -15.7J1300+219 -18.9431 0.6 -16. -35.2452J 0..5735 15.84 -8.67 -31.7695J 0.66383 -13.2487 2.06 -8.79 -32.1149J 0..1986 28.06 -9.56 -34.3627J 0..6421 2.3 -11.3 -32.4131J 2.30664 -14.6615 13.62 -9.67 -34.8889J 0..4935 24.07 -9.28 -33.2364J 0..6757 30 -10.5 -34.5627J 0.571647 -14.3947 30 -9.9 -34.3592J 0..2321 22.63 -9.53 -34.3091J 0.473026 -14.224 29.16 -9.91 -34.0939J 4.96243 -13.6757 14.45 -8.36 -34.2615J 1.05883 -15.279 4.91 -10. -34.7251J 0.4647 -14.0635 8.86 -9.78 -33.4083J 0.619454 -14.056 30 -9.62 -34.0553J 0..7352 19.94 -12.5 -36.3653J 0..821 2.3 -11. -34.5638J 0.00256 -19.6778 3.72 -17.2 -36.3868J 0..8297 9.65 -11.1 -35.4067J 0..2434 6.75 -9.65 -33.7319J 2.43743 -15.1656 2.21 -10.7 -34.6271J1313+0931 0..0969 0.78 -10.9 -33.6481J 2.94839 -13.9318 9.6 -8.85 -34.1139J 0..2757 30 -10.9 -34.0181J 2.6422 -13.8996 5.55 -8.87 -33.7961J 0..9914 30 -11.6 -35.6158J 0..8153 12.64 -10.718 -15.1J 0..8239 14.88 -10.5 -34.3511J 0..7212 0.93 -13.7 -36.0813J 0..0339 4.23 -9.97 -32.8371J 1.27906 -14.6253 30 -9.83 -34.9395J1321+8323 0..2472 0.77 -10.4 -33.69J.506058 -14.5867 19.91 -10.239 -15.52 -34.3202J 2.76421 -13.9547 30 -8.84 -34.6036J 0..2534 30 -9.69 -34.3871J 2.4838 -15.0092 11.03 -9.95 -35.1771Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 11TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0.477991 -14.4895 3 -10. -33.3762J 0.79267 -14.5086 15.7 -9.99 -34.3338J 0..2749 8.5 -9.89 -33.6693J 0..752 2.17 -17. -36.2465J 0..7235 4 -9.39 -32.78J 0..8153 6.5 -10.8 -33.6517J 0..5058 30 -9.42 -33.1614J 0..5214 2.29 -10.1 -33.338J 1.47872 -15.2147 7.78 -10.7 -35.0057J 1.56522 -13.4698 8.11 -8.65 -33.3036J 0..2924 10.5 -10.2 -34.8555J 0..2518 0.87 -10.2 -33.7347J 0..2676 2.32 -14.3 -36.9019J.107718 -16.6655 3.89 -12.9898 -16.927 -35.018J 0..4486 16.01 -11.7 -34.7011J 0..6073 6.3 -16.6 -37.111J 1.23899 -13.857 8.16 -9.12 -33.592J 0..2757 1.77 -14.8 -36.3908J 0..4559 7.62 -11.9 -34.8149J 0..2967 1.92 -10.1 -32.8884J 0.627285 -13.71 7.03 -9.26 -33.0846J 0.19334 -12.5969 8.55 -8.63 -31.5454J 0..3665 7.17 -11.2 -35.6847J 1.25309 -14.4881 5.87 -9.72 -34.0849J 0..4559 3.9 -12.7 -35.2538J 0..8477 6.54 -9.42 -33.1788J 0.927772 -14.4214 8.18 -9.8 -34.0318J 0..2899 5.82 -10.9 -33.1989J 0..1232 4.52 -11.2 -33.9794J 0..9101 14.24 -10.8 -34.5924J 2.97 5.62 -8.7 -33.7798J 0..5513 6.47 -10.5 -33.9015J 2.03867 -15.1457 7.58 -10.2 -35.0649J 1.21338 -14.2226 8.43 -9.47 -33.9626J 0..5086 7.95 -13.6 -36.5811J 0.50738 -15.1403 8.75 -10.7 -34.5178J 0..4437 4.09 -8.52 -31.006J 0..1979 5 -10.6 -32.7326J 0..4101 7 -10.1 -31.4793J 0.84279 -13.7773 1.8 -9.22 -32.6885J 0.39917 -16.0458 6.14 -11.1 -35.1653J 1.8 7.03 -10.1614 -16.266 -34.614J 0..5544 0.74 -17.03 -18.8J 0..9208 21.3 -10.7 -34.7701J 0..214 6.73 -11. -34.2321J 0.213075 -13.262 9.11 -9.27 -32.2803J 0..5003 9.7 -10.7 -33.9096J 0..0531 9.75 -9.53 -33.6184J 0.528591 -15.0757 12.6 -10. -34.6294J 0..4949 30 -10.152 -13.6J 0..1713 2.15 -13.7 -35.6792J 0.529156 -14.719 5.95 -10.7 -33.9473J 0..0057 9.32 -8.85 -32.2039J 0..4776 11 -8.35 -31.705J 0..6517 27.74 -10.8 -34.291J 0.394946 -14.129 3.68 -9.87 -33.0216J 4.63019 -14.1945 6.6 -8.82 -34.4098J 0..2366 14.4 -10.5 -34.719J 0..9208 1.99 -11.3 -34.8502J 0.29558 -14.3686 5.72 -10.4 -33.3268J 1.09681 -15.0511 5.04 -10.4 -34.5239J 1.6726 -15.567 9.31 -10.6 -35.4896J 0..6253 4.9 -11.6 -35.0168J 0..1707 1.74 -15.8 -36.6744J 0.06818 -13.0799 7.65 -9.67 -31.5274J 0..8386 6.38 -10.8 -33.8966J 0..1079 7.71 -10.8 -34.6119J 0.366734 -14.4045 10.19 -10. -33.7072J 1.0235 -15.6198 8.31 -10. -35.2797J 0..6576 1.46 -12.466 -17.2J 0..1296 10.81 -10.7 -34.7436J 0.50173 -15.3206 9.98 -10.2 -34.7504J 0..2069 5.89 -10.3 -34.4755J 0.57029 -14.6819 2.29 -10.2 -33.5281J 0..3686 10.62 -8.87 -33.0079J 0..5575 1.8 -10.019 -15.1J 0..8508 2.42 -17.6 -36.2684Continued on next page
12 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..1925 4.07 -17.6 -37.1462J 2.03499 -14.2277 5.72 -9.24 -34.0238J 1.95443 -14.2495 9.74 -9.37 -34.2593J 0.306368 -14.52 7.25 -10.4 -33.5968J 0..9872 5.78 -10.1 -34.4631J1434+7257 0..2596 0.75 -14.3 -35.4855J 0..8125 1.46 -10.5 -33.3819J 0..6108 3.25 -16.7 -36.8236J 0.061696 -14.066 11.12 -10.4 -32.6326J 0..1986 4.77 -9.86 -33.2772J 0..8477 0.76 -15.8 -35.9156J 0..9508 4.03 -10.3 -33.9487J 1.17584 -15.4437 4.44 -10.2 -34.8916J 0..4711 3.17 -10.8 -34.5669J 2.76 4.38 -9.7 -33.8972J 4.78 8.78 -8.5 -34.084J 0..0083 2.03 -18.9 -36.3875J 0.46333 -16.0655 4.74 -11.5 -35.1374J 0.386625 -13.295 5.64 -9.04 -32.3638J 0..8386 9.44 -11.1 -33.7341J1453+1902 0..9355 0.95 -17.5 -36.4063J 0..5607 2.8 -10.8 -32.9921J 0..0878 3.32 -14.5 -35.9947J 0..6144 0.74 -17.9 -36.1162J 0..0074 0.43 -11.2 -33.7917J 1.7483 -14.2765 1.37 -9.33 -33.3861J 1.49864 -14.4365 4.25 -9.64 -33.9708J 0..9101 11.33 -9.61 -33.2864J 0..6216 2.37 -11.3 -34.3931J 0..7696 6.75 -11.4 -35.2228J 0..7375 4.51 -10.5 -33.8507J 0..4389 12.21 -8.9706 -14.7J 0..8697 7.88 -10.2 -34.4218J 0..5017 11.57 -15.431 -18.5J1503+2111 3.314 -15.8539 0.72 -10.4 -34.9618J 0..2573 3.93 -9.94 -33.1978J 0..1959 1.67 -9.67 -33.0734J 0..7959 1.79 -10.5 -33.2365J 0..9355 5.62 -10.7 -33.9665J1509+5531 0.739682 -14.301 2.1 -9.72 -33.2225J 0..0376 3.85 -10.8 -32.3023J 0..6737 13.63 -10.5 -15.6J 0..2147 4.22 -10.7 -34.5451J 0..3143 2.24 -11.3 -33.6966J 0..4634 7.1 -11.9 -34.5242J 2.07 6.61 -9.6 -34.5769J 0.128694 -14.1643 12.7 -10. -33.1079J 0..5607 9.84 -8.9289 -14.2J 0..8153 4.4 -7.92 -30.3687J 1.04612 -14.0691 4.26 -9.48 -33.4482J 0..0339 1.59 -10.9 -33.6233J 0..7305 1.27 -17.6 -36.1195J 0..5406 4.5 -10.3 -33.0966J 0..2147 10.32 -10.2 -33.4159J 0..6655 4.44 -11.2 -34.8566J 0..6778 10.98 -10.7 -34.3963J 0..3788 2.69 -10.835 -16.1J1518+4904 0..5654 0.7 -16.7 -36.7528J 0..3915 4.26 -12.9 -35.0834J 0..3696 13.12 -10.7 -33.9327J 2.15431 -14.0773 7.23 -9.17 -33.9999J 1.25405 -14.2248 17.81 -9.42 -34.3039J 1.5 1.89 -9.69514 -15.8535 -33.631J 0.395353 -14.699 4.47 -10.1 -33.6765J 0..4089 3.84 -9.84 -31.6168J 1.11605 -12.4486 21.59 -7.74 -32.5607J 0..8996 10.87 -8.25 -32.6488J 1.01169 -13.7905 6.01 -9.17 -33.3046J 0..0477 3.5 -12.3 -35.8724J 0.01136 -18.8827 3.53 -16.3 -36.2161J 0..9355 6.77 -11.4 -34.944J 0..9101 6.44 -11.1 -34.929J 2.41758 -13.719 2.01 -8.65 -33.1358J 1.0487 -13.9469 7.15 -9.27 -33.5521J 0.060822 -18.6038 0.99 -15. -36.1137J 0..4023 5.96 -11.9 -34.6292J 3.4673 -14.1107 5.55 -8.98 -34.1252Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 13TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..5686 4.85 -16.5 -36.9133J 0..0915 7.75 -10.7 -34.661J 0..3872 3.77 -9.84 -33.6088J 0..3298 1.46 -10.4 -32.6699J 0.356849 -16.0164 7.75 -11. -35.1884J 0..8633 3.1 -10.7 -32.0102J1532+2745 1.12484 -15.1079 0.98 -10.1 -33.8804J 0..1871 4.45 -11.4 -35.2129J 1.22143 -15.7447 10.94 -11.7 -35.6008J 1.36888 -14.8447 1.13 -10.2 -33.7643J 0..8125 4.26 -10.6 -33.634J 0..3904 2.8 -10.9 -33.2041J 0..3925 5.38 -12.3 -35.5242J 0..8447 4.63 -9.42 -32.9938J 0.307178 -14.5654 3.13 -10. -33.2786J 1.34 6.45 -10. -34.7626J 0.881438 -14.719 3.72 -10.3 -33.9649J 0..8633 12.09 -10.9 -34.4224J1537+1155 0..6162 1.05 -14.394 -17.424 -34.9463J 0..7144 1.82 -10.592 -15.7J 1.52812 -14.3799 2.63 -9.52 -33.7142J 0..556 24.59 -10. -34.3109J1538+2345 3.48 0.98 -8.98059 -15.J 0..8477 3.6 -10.9 -33.5763J 0..3872 9.7 -12.8 -35.7016J 0..4935 10.4 -10.5 -33.2606J 1.90849 -14.1361 3.76 -9.29 -33.7222J 0.85 12.94 -9.5 -33.916J 0.341213 -14.342 3.88 -10.2 -33.1941J 0..3768 2.41 -12.5 -35.1936J 1.22 3.74 -10.148 -16.J 1.00496 -15.1379 6.84 -10.2 -34.7053J 0..3143 4 -10.7 -33.0328J 1.63085 -15.6946 7.75 -10.2 -35.5266J 0..3757 8.17 -10.3 -34.8055J 0..1249 7.46 -9.01 -32.1989J 0.599245 -14.4012 2.58 -9.9 -33.3206J 1.79 4.87 -10.3351 -16.J 1.20757 -13.109 6.02 -8.31 -32.7007J 0..0555 1.27 -10.4 -33.7402J1543+0929 0..3645 5.9 -10.8 -34.7397J 0..9957 6.76 -9.59 -33.3649J 0..7905 1.46 -17.9 -35.9983J 0.377119 -13.284 6.32 -9.06 -32.3914J1544+4937 0..5331 2.3 -18.5 -36.9593J 0..2168 1.29 -12.7 -34.3094J 0..2798 2.01 -17.3 -35.8665J 0.58084 -13.9281 6.1 -9.53 -33.2077J 1.57692 -14.5317 3.18 -9.66 -33.9621J 0..5918 3.91 -12.9 -35.7252J 0.24219 -15.2262 7.19 -11.5 -34.1973J 0..0969 3.76 -14.4 -36.5656J 0..3925 3.89 -9.98 -33.4928J 0..9706 6.95 -10.6 -32.7756J1549+2113 1.26247 -15.0685 2.33 -10.9 -34.2673J 0..8508 1.54 -9.78 -32.2284J 0..3279 2.93 -11.1 -35.222J 0..7496 6.67 -9.26 -33.1788J 1.42 8.45 -10. -34.8389J 2.06983 -10.6345 4 -5.66 -30.2827J 0.67406 -15.7258 1.98 -11.7 -34.5814J 0.453394 -12.71 7.52 -8.46 -31.9729J 0..7212 3.36 -17.6 -36.776J 1.08133 -13.8041 4.8 -9.12 -33.2495J 0.12 3.44 -10.899 -14.967 -33.0046J 3.41804 -13.5058 8.05 -8.38 -33.6756J 0.97541 -14.6882 1.66 -10.6 -33.6277J 0..1586 4.61 -10.2 -34.2789J 0.51811 -16.2062 6.1 -11.8 -35.4362J 0.994681 -13.983 6.96 -9.38 -33.5535J 0..4815 7.53 -11.1 -34.6059J 0..219 9.09 -9.3 -33.6819J 1.12234 -12.7305 3.74 -8.08 -32.0837J 0..9914 2.3 -10.6 -33.4934J 0..6882 5.09 -9.04 -33.1062J 0..0223 1.8 -17.5 -36.5638J 0..2958 6.9 -10.7 -33.1496Continued on next page
14 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..6716 5.32 -10.6 -33.4166J 1.21 6.54 -10.3125 -16.J 2.55936 -15.1421 5.14 -10.3 -34.9914J 0.288457 -13.2048 4.04 -9.1 -32.0015J 0.86 6.83 -9.24134 -14.J 0..1574 8 -8.52 -32.7273J 0.28307 -14.7986 4.6 -10.6 -33.6435J 0..5214 2.58 -9.97 -33.5544J 0..9066 3.83 -12.7 -34.372J 0..5544 8.52 -10.1 -33.9106J 0..8069 0.53 -16.5 -36.4329J 0..3045 1.48 -9.99 -32.9272J 0..9914 3.59 -10.7 -33.7918J 0..0757 2.56 -11.899 -16.4J 1.01361 -14.3233 7.06 -9.63 -33.9082J 0..5918 1.28 -11.1 -34.2474J 0..5143 0.61 -11.5 -33.6549J 0..5952 7.01 -10.3 -33.706J 0..6038 3.82 -12.486 -17.5J 1.53 2.33 -10. -34.5834J 0..3002 4.12 -11.6 -34.0425J 1.2794 -13.8861 12.73 -9.1356 -15.1J 1.01839 -15.6383 3.89 -10.3 -34.9663J 0..8665 6.59 -9.59 -33.0978J 0..5817 6.6 -10.5 -34.0271J 1.29685 -14.71 5.41 -9.9 -34.2863J 0.666438 -15.266 8.82 -10.9 -34.7654J 0..2865 3.33 -10.9 -32.8004J 0.38 2.33 -13.5037 -18.J1612+2008 0..4283 1.43 -12.5 -34.9439J 0..8041 3.12 -10.8 -33.9941J 0..4225 18.18 -10.9 -34.0965J 0.61552 -15.0292 6.29 -10.6 -34.3473J 0..1993 3.89 -10.9 -34.1019J 0..7167 6.14 -9.42 -32.8955J 0.655221 -14.1785 9.94 -9.7 -33.7225J1614+0737 1.1 1.77 -9.902 -15.9379 -33.6869J 0..0168 0.7 -17.4 -36.0906J 0..7986 10.1 -11.7 -35.143J 0..3054 7.24 -8.25 -31.2603J 1.53401 -14.1284 9.56 -9.24 -34.0249J 0..5376 6.96 -12.6 -35.8683J 2.47757 -14.8013 1.88 -9.75 -34.1997J 0..4711 8.4 -11.7 -34.683J 0.791526 -14.699 3.57 -10.6 -33.8803J 0..3316 3.92 -8.92 -32.3465J 1.2 18.97 -8.9893 -15.0343 -33.8135J 1.02583 -13.5391 7.38 -8.83 -33.1484J 3.42847 -13.7423 6.28 -8.56 -33.8056J 0.56708 -13.7825 10.59 -9.33 -33.2913J 0..8697 6.46 -9.39 -31.2512J.203553 -14.7011 3.42 -10.749 -15.239 -33.2741J 1.15636 -16.1713 1.73 -11.6 -35.2027J 1.08402 -13.8861 4.88 -9.22 -33.3397J 0..1146 7.76 -10.2 -34.3052J 0..5901 11.55 -10.4 -34.247J 0..8069 8.32 -10.4 -34.4195J 0..2967 5.37 -9.94 -33.4175J 0..5129 6 -11.446 -16.6J 0..9586 5.24 -11.1 -35.2745J 1.07297 -13.767 8.55 -9.07 -33.4598J 4.3261 -10.7696 9.14 -5.49 -12.8J 0..2306 4.66 -16.1 -37.0026J 0..7077 3.83 -10.5 -33.7227J 1.27645 -14.5884 3.86 -9.85 -34.0112J 0..1733 1.8 -15.8 -35.2031J 0.36459 -14.9914 21.85 -10.4 -34.6229J 0..3757 3.76 -8.86 -32.5419J 0..0975 3.64 -11.3 -33.7564J 0..2168 5.14 -11.1 -35.5981J 0.448723 -14.382 6.11 -10.1 -33.5502J 2.35528 -15.3536 5.18 -10.8 -35.1702J 0..7747 7.94 -9.49 -33.0678J 0..1772 8.21 -9.96 -33.373J 0.370141 -14.082 5.41 -9.85 -33.1137J 0.293928 -13.757 10.25 -9.64 -32.9661J 0.450868 -15.1158 4.42 -10. -34.1454Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 15TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ1627+1419 0..4056 2.84 -11.7 -34.2801J 0.140746 -14.762 7.15 -10.5 -33.4949J 0.612331 -14.4389 6.86 -10. -33.7924J 0..1319 5.66 -10.2 -34.1621J 0..0969 3.67 -12.3 -35.9411J 0..9066 11.21 -10.2 -34.6239J 4.13754 -13.757 14.29 -8.49 -34.2589J 2.98819 -14.1549 3.74 -9.05 -33.9334J 0.006001 -20 1.36 -17.4 -36.642J 0..8477 6.7 -9.43 -33.1515J 0..6517 6.53 -9.22 -32.9572J 0..9586 1.85 -10.8 -33.787J 0.551241 -17.055 8.51 -12.5 -36.4565J 0..1805 4.22 -11.5 -35.3919J 1.04681 -13.8268 9.13 -9.18 -33.5374J 1.70915 -13.1192 8.42 -8.21 -33.0075J 0.228564 -13.821 6.96 -9.82 -32.7528J 0..1871 8.54 -7.6333 -13.1J 0..9706 2.76 -10.8 -34.1128J 0..2076 11.93 -9.97 -33.6544J 0.71 11.9 -8.6 -32.7716J 0..4214 7.02 -10.2 -33.5446J 0..8041 9.3 -10.6 -34.2081J 0.224201 -16.3872 5.71 -12. -35.2247J 1.17939 -15.6345 4.89 -10.3 -35.1257J1635+2418 0..9245 2.27 -11.2 -34.7013J 1.59475 -14.4437 6.96 -9.55 -34.2192J 0.671964 -14.056 8.85 -9.55 -33.5605J.529121 -14.8633 7.26 -10.4963 -15.816 -34.178J.206649 -13.3307 9.33 -9.372 -13.8751 -32.346J.20464 -13.684 6.53 -8.95972 -14.994 -33.31J 0..821 11.16 -10. -34.2327J 0..4413 30 -9.97 -34.5359J 0.23 8.2 -11.194 -15.8724 -34.2873J 0..4962 3.83 -10.778 -14.3J 0..2277 5.77 -9.34 -31.9067J 1.16574 -14.3526 5.94 -9.64 -33.9232J 0..2343 10.01 -9.64 -33.8879J 0..1135 17.54 -11.626 -17.8J 0.77113 -15.2291 10.96 -10.4 -34.8863J 1.11 5.09 -11.9086 -17.J 0..7932 8.46 -11.5 -33.5219J 0..2882 5.85 -9.26 -32.2298J 0..3197 6.87 -9.79 -33.7699J 0.340503 -14.5768 4.88 -10. -33.5275J 0..8239 5.23 -12.1 -36.0417J 0..2381 4.64 -9.88 -33.3583J1640+2224 0..5482 1.45 -18.5 -36.9399J 0..0106 12.75 -8.0523 -12.1J 0..0937 6.1 -11.1 -33.8605J 0..3768 7.25 -9.07 -32.6811J 0..4763 10.66 -10.1 -35.1029J 1.02 1.33 -11.7049 -17.J 0..7328 0.74 -17.8 -35.9971J 0..4976 6.3 -9.42 -32.4026J 1.3479 -14.082 6.19 -9.38 -33.7335J 0..5229 5.88 -9.0236 -14.3J 0.48 4.5 -9.3 -32.7383J 0..1249 9.58 -11.3 -33.9368J 0.38769 -14.7496 2.61 -10.2 -33.4849J1645+1012 0..0899 3.27 -11.8 -34.9484J 0.84068 -15.9586 10.96 -11.4 -35.6533J 0..9469 6.86 -8.98 -31.8782J 0..6778 10.92 -10.31 -15.5J 1.78561 -14.7696 1.8 -9.85 -34.0068J 0..8894 12.9 -11.919 -16.2J 0..4522 5.3 -9.94 -33.7637J 0..7328 9.89 -10.1 -34.2573J 0.16495 -13.6253 5.71 -9.78 -32.3294J 0..3675 5.66 -10.9 -34.6168J1649+2533 1.01526 -15.2526 2.91 -10.3 -34.4533J 0..4353 6.62 -12.8 -35.4047J 0.78 9.04 -11. -35.9812J 0..3565 5.56 -11.6 -35.7717J 0..3036 5.63 -8.97 -32.5302J 0..1838 12.69 -10.7 -33.4912J 0..7696 14.07 -10.6 -34.4359Continued on next page
16 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 1.74955 -14.4949 2.15 -9.69 -33.8004J 0..7033 5.06 -12.57 -17.5J 0..7773 8.11 -12.9 -35.907J 0.38087 -13.7932 5.09 -9.51 -32.8109J 0..7399 5.83 -10.3 -33.43J 0..5171 1.62 -9.86 -33.4451J 0..3179 5.2 -9.74 -33.6904J 0..0867 7.29 -9.7294 -15.5J 0..7423 6.39 -10.3 -34.0808J 0.890534 -14.684 5.99 -10.8 -34.1413J 1.75531 -14. -9.9 -34.5537J 0..7545 3.1 -12.6 -35.461J 1.70374 -14.5003 3.1 -9.69 -33.9533J1652+2651 0..1844 2.93 -10.4 -34.3433J 7.70718 -14.0223 8.8 -8.43 -34.5839J 0..9508 2.64 -17.8 -36.7184J 0..5544 5.12 -10.9 -33.4782J 1.05 10.37 -10. -35.1148J 0..3179 5.64 -9.82 -33.5865J 0.49 5.13 -12.558 -17.6756 -35.8867J 3.02 13.76 -9.3 -34.8167J 0..7747 4.08 -11.5 -35.0142J 0..1337 13.15 -10.6 -34.9556J 1.27395 -15.8861 5.15 -11.4 -35.4332J 1.10156 -13.2907 11.84 -8.69 -33.1363J 0..4365 8.57 -12.4 -35.8345J 1.19344 -14.699 11.94 -9.99 -34.583J 0..8928 7.6 -10.3 -34.3672J 0..0862 5.58 -9.64 -33.3481J 1.16645 -13.3686 9.59 -8.66 -33.1474J 0..4134 6.26 -10.15 -15.2J 0..9508 1.24 -17.1 -36.1616J 0..209 4.85 -10. -34.4318J 0.474381 -15.767 7.93 -11.3 -35.0726J 0..6021 9.18 -12.3 -35.8432J 1.35831 -14.327 5.64 -9.51 -33.9415J 1.45 6.48 -9.5 -34.0807J 0..2984 6.34 -12.2 -36.5793J 0..0039 5.77 -11.1 -34.9483J 0..3979 6.44 -11.3 -35.8153J 0..9666 14.53 -10.9 -34.6212J 0..2518 4.53 -12.144 -16.5J 2.45461 -13.9547 7.81 -8.98 -33.9675J 0..2848 17.39 -11.1 -34.7644J 0..9586 9.68 -11.2 -35.5801J 0..4225 9.69 -11.1 -34.7305J 0.182136 -13.2815 5.18 -9.3 -31.9864J 0..9431 7.49 -12.3 -35.9049J 0..0092 7.12 -10.8 -32.9254J 0..6498 5.44 -8.61 -31.4967J 2.12351 -14.4815 7.05 -9.57 -34.3869J 0.804341 -14.762 2.05 -10.5 -33.7094J 1.25 3.31 -10. -34.5139J 1.74729 -13.8447 5.34 -8.92 -33.5448J 1.3964 -14.2941 4.5 -9.53 -33.8226J 0.306323 -15.041 1.89 -10.3 -33.5338J 0.298987 -14.383 1.18 -10.8 -32.6607J 0.255426 -14.9666 3.75 -10. -33.6781J 0..7144 8.46 -9.13 -33.3037J 0..2175 3.86 -9.04 -32.038J 0..4597 11.87 -8.89 -33.1994J 0..1475 3.76 -12.1 -34.8004J 0..2218 6.31 -11.7 -35.6598J 0..5229 12.2 -10.1 -34.1076J 0.616979 -14.1864 13.43 -9.8 -33.835J 0..5346 3.64 -11.4 -34.3845J.581017 -14.7167 4 -10. -33.8132J 0.890594 -14.2441 7.99 -9.6 -33.8266J 5.76378 -13.9355 9.17 -8.54 -34.3888J 0..8069 10.64 -10.7 -33.9897J 0..3768 4.78 -9.81 -33.6266J 0..9431 3.5 -17.9 -36.8711J 0..8697 6.02 -11.9 -35.1485J 1.22578 -14.0655 17.55 -9.31 -34.1284J 11.0063 -10.7077 3.8 -5.05 -31.0594J 1.29784 -14.5834 30 -9.87 -34.9039J 1.19102 -14.7258 2.01 -10.9 -33.8352Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 17TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0.653054 -14.2 2.61 -9.71 -33.1618J1709+2313 0..4401 1.83 -18.131 -19.4J 0.447857 -14.644 8.97 -10.3 -33.9781J 0..1046 5.17 -9.6925 -15.9J 1.7359 -15.0969 5.49 -10.6 -34.8062J 0..1325 4.98 -9.58 -33.4971J 0..0315 2.6 -9.32 -31.1872J 0.954158 -16.699 4.26 -12.7 -36.0382J 0..9914 6.9 -11.8 -35.0177J 0..9586 2.94 -10.7 -34.0961J 0..1302 5.2 -9.81 -33.2442J 0..5735 4.17 -12.9 -34.9351J 0..8097 4.24 -9.27 -33.1211J 0.25536 -14.8928 3.13 -10.1 -33.5257J1713+0747 0.00457 -20.0691 1.18 -17.1 -36.5311J 1.60011 -12.752 6.5 -7.93 -32.4993J 0..2306 2.65 -11.6 -35.2269J 3.86 13.2 -5.00455 -12.J 1.22 3.91 -11.2923 -17.J 0..8356 6.08 -11.7 -35.2416J 0..3565 10.53 -9.7455 -15.8J 0..4237 4.8 -9.36 -32.2799J 2.04 4.62 -9.5 -34.2327J 0..0575 12.58 -10.4 -34.6461J 0..7447 9.46 -9.34 -33.2504J 0..5421 6.33 -10.2 -33.5676J 1.03607 -14.5406 4.79 -9.81 -33.9665J 0..0794 19.58 -10.691 -16.3J 0.656299 -14.0088 22.21 -9.5 -33.9026J 0..2765 6.31 -9.77 -33.6408J 1.1495 -15.0862 9.52 -10.8 -34.8555J 1.08552 -16.4815 6.88 -11.3 -36.0849J 0..9136 9.03 -9.65 -33.1993J 0.349929 -14.757 11.41 -10.1 -34.0884J 0..4342 5.47 -9.86 -33.8506J 0..7077 8.85 -11.5 -34.8925J 1.28938 -13.5817 10.87 -8.82 -33.4585J 3.32 5.08 -6.62099 -13.J 0.07467 -13.8794 4.24 -10.7 -32.1101J 0..1244 10.82 -9.77 -33.66J 0.00579 -20.0947 1.64 -17.6 -36.8025J 0..7773 6.28 -10.1 -33.5821J 0..4067 9.42 -11.8 -34.4829J 0.477715 -16.082 5.41 -11.3 -35.2245J 1.6 1.76 -9.39844 -15.6604 -33.407J1720+2150 1.68 3.59 -10.279 -16.5683 -34.6244J 0..2269 3.44 -10.7 -34.4354J 0..1273 1.43 -10.1 -33.8055J 0..4855 5.11 -12.1 -35.4695J 1.00404 -14.7905 8.6 -10.4 -34.4569J 0.40404 -15.8928 4.64 -11.4 -34.8959J 0..2565 1.56 -18.3 -36.7235J 0..5986 4.6 -9.56 -32.4394J 0..1898 3.18 -10.6 -34.1011J.399183 -14.3507 5.3 -10.106 -15.181 -33.4063J 0.236173 -13.9626 2.51 -9.9 -32.4657J 0..4271 7.27 -11.8 -34.3584J 0..1226 1 -18.4 -36.1214J 0..0458 4.63 -10.8 -34.2374J 0..0964 4.28 -10.146 -14.9J 0..1397 10.5 -9.57 -33.868J 1.27 12.01 -8.8 -33.5724J 1.30911 -14.4547 6.26 -9.68 -34.0985J 0..3665 3.43 -11.343 -15.1J 1.25779 -14.7011 4.09 -9.99 -34.1427J 1.03247 -13.8239 10.2 -9.19 -33.5766J 2.06239 -13.6383 4.49 -8.68 -33.3351J 0.004792 -19.301 3.44 -16.7 -36.2483J 1.46507 -14.5544 4.8 -9.74 -34.1317J 1.11013 -11.9136 9.97 -7.22 -31.6879J 0..8416 7.36 -10.3 -33.8973J 0..4776 6.19 -9.86 -33.9453J 1.2931 -14.9586 3.75 -10.4 -34.3745J 0..6091 1.62 -15.9 -35.9815J 0..9508 2.44 -10.5 -33.655J 0..1427 4.94 -11.71 -17.9J 0..6326 5.51 -11.5 -35.0417Continued on next page
18 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..7645 1.42 -15.1 -36.4684J 0..6946 0.62 -17.5 -36.127J 1.51 6.85 -9.22253 -15.J 0.16 4.26 -9.2 -31.5757J 3.27024 -13.6576 4.23 -8.43 -33.5287J 0..5952 4.03 -17.5 -36.3008J 0..7747 5.32 -10.7 -34.1076J 0..5513 11.98 -9.16 -33.0961J 0..7852 4.98 -8.23 -32.1316J 0.48377 -15.7399 2.21 -11.7 -34.4992J 0..5528 0.8 -9.64 -31.4796J 0..3958 6.38 -11.23 -16.1J 2.184 -14.8861 6.2 -9.95 -34.7479J 0..8928 5.94 -9.49 -33.1947J 0..1798 8.78 -11.7 -34.3633J 0..8477 1.81 -17.2 -36.5609J 0..3696 1.49 -11.1 -35.2133J 0..6778 7.78 -10.3 -34.1184J 0..9547 4.66 -10.3 -34.2387J 0..7825 14.18 -10.4 -34.2232J 1.24592 -14.3872 6.3 -9.69 -34.0123J 0..8239 3.44 -9.64 -32.6191J.561778 -14.4413 13.95 -10. -34.0656J 1.01123 -15.3979 4.11 -10.9 -34.7468J 0..3757 5.36 -10.8 -34.7591J 0..9788 3.48 -10.1 -34.0377J 0..7905 4.37 -12.1 -35.8946J 1.16934 -11.6421 7.4 -6.92 -31.3094J 0..1993 3.25 -10.1 -34.3351J 0..9172 4.32 -10.9 -33.9055J 0..5834 11.14 -9.38 -32.9057J 2.64222 -14.4647 4.34 -9.38 -34.2544J 1.58 4.86 -8.9813 -15.258 -33.4457J 6.49 5.47 -8.3 -33.8003J 0..8041 2.72 -10.6 -33.6703J 0..1007 2.38 -17.5 -36.8282J 0..4283 4.44 -8.8991 -14.6J 0..857 5.88 -8.8 -32.0102J 0..6478 14.08 -10.8 -34.4385J 0..2132 2.25 -9.98 -32.8951J1738+0333 0.00585 -19.618 1.47 -17.3 -36.2827J 1.97885 -14.0675 2.79 -9.11 -33.5398J 0..5017 3.88 -10.4 -33.3643J 0..3354 5.91 -9.83 -33.6349J 0..0867 3.91 -8.77 -32.0559J 0..5287 10.76 -11.8 -35.0307J 0..0996 1.48 -10.4 -33.8857J 0..0526 4.55 -11.3 -35.3043J1739+0612 0..8069 5.44 -11.6 -34.6422J 1.2157 -16.0878 2.02 -11.8 -35.2082J 0..1035 3.19 -9.97 -32.8465J 0..9431 3.41 -10.5 -32.2644J 0..6615 6.97 -10.7 -33.614J 0..7305 7.68 -9.35 -33.0699J 0.877561 -15.7055 4.85 -11. -35.0648J.341772 -16.7011 1.13 -12.524 -17.464 -35.0182J1740+1000 0..6676 1.36 -9.85 -31.7191J1740+1311 0.80305 -14.8386 4.77 -10.5 -34.1521J 1.69266 -14.7328 8.26 -9.85 -34.6086J 0..3316 0.4 -7.99 -30.447J 0..5935 10.84 -9.17 -33.1148J 0..4089 4.72 -10.9 -33.5249J 2.04308 -14.644 3.5 -9.64 -34.2285J1741+1351 0.003747 -19.52 1.08 -17.8 -35.8573J 3.90451 -13.7878 2 -8.55 -33.4106J 0.4137 -13.7696 0.3 -9.54 -31.5936J 0..0937 5.74 -11.9 -35.1229J 0..8297 3.33 -11.7 -35.0332J1741+2758 1.32 2.06 -9.95795 -16.J 0..1979 4.66 -11.4 -33.9459J 1.89375 -14.0462 5.02 -9.17 -33.7545J 0.512211 -14.7144 4.75 -10. -33.8308J 1.01635 -16.0883 6.4 -11.5 -35.6317J 0..4711 4.99 -12.6 -35.5147J 0.444645 -14.8069 1.59 -10. -33.3865J 0..3206 4.85 -11.5 -34.3443J 1.21 4.96 -10.5883 -16.Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 19TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 2.41458 -12.9172 3.65 -7.82 -32.5926J 0..9747 8.03 -10.6 -32.8954J 0..1062 4.67 -10.3 -33.9917J 0..0491 0.4 -17.4 -35.9915J 1.75721 -14.6234 1.99 -9.74 -33.8973J 1.68351 -15.0794 2.45 -10.7 -34.4249J 1.06606 -13.6737 3.64 -9.06 -32.9928J 0..8097 4.6 -13.5 -36.4393J 0..7212 8.16 -11.4 -34.9142J 1.04541 -15.2 7.26 -10.4 -34.8104J 0..0339 2.38 -16.3 -36.4279J1745+1017 0..5638 1.36 -18.6 -36.8512J 1.16 9.3 -9.5 -34.307J 3.76373 -10.7545 8.3 -5.53 -30.9794J 0..9706 0.2 -9.79 -31.567J 0..6144 4.82 -10.6 -33.8717J1746+2245 3.46504 -14.308 4.32 -9.19 -34.2134J1746+2540 1.05815 -14.9788 4.16 -10.5 -34.3527J 1.47848 -13.8962 30 -9.02 -34.2733J 1.0771 -11.8729 12.86 -7.13 -31.7446J 0..9031 21.77 -9.2841 -15.7J 1.55 7.27 -10. -35.1566J 0..8794 8.44 -9.58 -33.2352J 2.78008 -14.6253 11.78 -9.55 -34.8707J 0..8069 17.55 -9.43 -31.4986J 0..2125 2.49 -9.55 -31.3338J 0..8827 5.81 -18.3 -36.5935J 0.394133 -14.9172 3.64 -10. -33.8042J 0..9547 3.89 -11.665 -16.1J 0..6162 6.1 -10.031 -15.5J 1.33539 -14.7645 5.28 -9.92 -34.3429J 0.609874 -14.104 9.05 -9.64 -33.5761J 0..2291 1.8 -10.5 -33.8638J 1.33231 -14.6737 2.66 -9.94 -33.9534J 5.63905 -14. -8.7 -34.3362J 0..9666 7.15 -9.47 -33.4041J 0..5784 5.03 -10.981 -16.1J1750-28 1.30051 -14.2381 5.19 -9.43 -33.7976J 0..7055 4.43 -11.9 -35.0414J 0..4191 5.07 -11.3 -35.6894J 0.394836 -14.5784 7.46 -10. -33.7778J 0..9469 1.44 -17.8 -36.4282J 0.548227 -14.054 9.27 -9.61 -33.4903J 0..8894 1.03 -10.2 -33.5031J1752+2359 0..1918 2.7 -10.7 -33.9651J 0.191037 -15.209 7.42 -11.3 -34.0907J 0..0899 0.2 -9.62 -31.8713J 0..4597 7.62 -10.2 -33.8782J 0..6946 2.77 -14.8 -35.6664J 0..0132 3.46 -14.7 -36.2609J 0..8508 10.18 -9.48 -33.3116J 2.09025 -15.0809 11.43 -10.3 -35.1894J 0..2434 5.6 -11.8 -34.2801J.392704 -15.1068 2.24 -10. -33.7813J1754+5201 2.3914 -14.8069 3.56 -9.77 -34.4672J 0.19071 -15.1073 2.16 -11.9 -33.4524J 0..1637 4.27 -10.4 -34.3899J 0..3546 8.64 -10.203 -15.5J 1.17597 -13.0448 4.12 -8.33 -32.4603J 1.00451 -13.5058 11.52 -8.89 -33.2995J 0..9508 7.22 -9.93 -32.9079J1755-26 0..9101 5.17 -9.66 -32.9881J 0..8633 2.83 -12.7 -35.4635J 0..5072 6.38 -16.1 -37.149J 0.42 5.02 -9.8 -32.3165J 0..9914 0.73 -14.8 -35.0392J 0.67048 -15.5452 4.96 -11.7 -34.7972J 0..9066 7.74 -10.8 -34.3856J 0.18531 -15.1068 4.11 -11.8 -33.7187J 0.234101 -13.8894 3.51 -9.8 -32.5343J1757-27 0..6778 5.42 -15.6 -36.3896J 0.00887 -19.58 1.36 -16.1 -36.3917J 0..7721 4.23 -9.27 -32.9691J 0..0195 11.38 -10.4 -34.4396J 2.17 3.85 -9.5 -34.4491J 1.25 4.99 -9.56283 -15.J 0..0264 1.71 -11.2 -34.8742Continued on next page
20 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ1758+3030 0..1427 2.67 -10.3 -34.2759J 2.51226 -13.8041 3.77 -8.73 -33.5107J 0..5935 4.75 -11.9 -34.9026J 0..5129 13.3 -10.2 -34.2311J 0.25472 -16.0297 5.24 -11.9 -34.8853J 2.85 4.44 -8.5 -33.5619J 0..9626 3.54 -9.64 -32.9055J 0..9706 11.88 -9.46 -33.6845J 0..4248 11.2 -10.034 -15.6J 0..0017 5.94 -8.36 -32.4864J 0.5744 -14.3344 1.92 -9.98 -33.1071J 1.07 3.36 -9.8 -33.7132J 0..9393 2.24 -9.43 -32.9136J 1.79927 -15.2596 11.18 -10.9 -35.2934J 0..4802 7.13 -9.88 -34.028J 0..2749 1.8 -18.4 -36.8197J 2.5505 -15.7399 11.91 -10.7 -35.9527J 1.10872 -15.153 4.81 -10. -34.6102J 0..8097 12.26 -12.4 -36.27J 0..7959 5.16 -9.54 -32.8131J 0.415827 -12.9469 4 -8.6 -31.8981J 0..8928 4.61 -9.16 -31.3833J 1.08191 -14.4828 3.27 -9.81 -33.7617J 1.3856 -15.4012 4.96 -10. -34.9685J1802+0128 0..6757 8.79 -10.6 -34.0936J 0..2487 5.22 -10.4 -34.4081J 0..1391 3.33 -16.2 -36.4937J 0..0675 12.13 -9.68 -33.6367J 2.46105 -14.8794 10.24 -9.87 -35.0111J 0.536596 -14.752 12.9 -10.8 -34.3225J 2.86434 -13.8182 5.88 -8.73 -33.7748J 0.443649 -15.4815 6.46 -11.191 -16.J 0..8729 4.4 -9.11 -31.3726J 0.334415 -16.767 3.62 -12.4 -35.5802J 0..4724 6.01 -11.2 -34.7831J 0..3307 7.8 -15.5 -36.3166J 0..8447 5.33 -11.1 -35.0579J 0..3883 1.17 -16.9 -36.1572J1805+0306 0..0004 5 -11.5 -33.7695J 0..0137 6.69 -10.5 -34.227J 1.18 5.3 -10.848 -16.8653 -35.0907J 0..0762 11.87 -9.87 -33.4892J 0..7545 9.26 -10.3 -34.005J 0..2351 4.79 -12.7 -36.4661J 0..3242 4.61 -11.049 -16.9J1806+1023 0..2418 3.27 -11.1 -35.1717J 0..8508 3.56 -10.1 -33.8506J 0..0645 6.36 -10.6 -34.4231J 0..7696 10.16 -12.1 -36.451J 0..9172 10.02 -8.52 -32.3311J1807+0756 0.4643 -15.8894 7.66 -11.4 -35.1706J 0.163727 -16.5406 1.5 -12.683 -16.J 2.76419 -14.3019 11.21 -9.26 -34.5233J 0..9136 9.63 -9.37 -33.5454J 0..9066 5.18 -10.3 -34.2936J 0.596993 -15.1124 8.5 -10.693 -16.J 0..5735 4.16 -10.194 -15.8J 0..9355 8.57 -12.91 -17.8J 7.55592 -9.26043 13 -3.79 -29.9829J 0.91841 -13.767 7.35 -9.12 -33.3265J 2.45788 -13.1818 2.45 -8.15 -32.6917J 0..1518 5.06 -9.91 -33.1484J 0..6402 10.59 -10.5 -34.2674J 0..8182 17.82 -11.1 -35.296J 0..2807 12.01 -9.68 -34.0424J 1.12448 -13.9747 7.06 -9.28 -33.6047J 0..5935 3.71 -10.4 -31.8108J 5.54035 -11.1096 3.6 -5.73 -31.1396J 0..1379 10.91 -9.83 -33.5442J 0..4179 5.2 -9.97 -33.7107J 0..9208 13.02 -11.7 -35.7003J 0..6216 5.88 -12.6 -35.4581J 0..2823 5.59 -12.2 -34.9467J 0.032822 -18.8327 4.05 -15. -36.6865J 0..4168 2 -11.7 -33.8648J 0..7932 9.56 -10.4 -34.47J1811+0702 0..5702 3.13 -10.8 -33.4604Continued on next page
Gravitational waves from pulsars in the context of magnetic ellipticity 21TABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 2.69 8.5 -10. -35.1755J 0..9208 7.03 -11.6 -35.0906J 0..0453 5.93 -14.384 -18.3J 0.557464 -14.2 9.36 -9.8103 -15.7J 0..3565 5 -9.94 -31.5964J 0..8729 1.7 -17.1 -36.2586J 0..5272 3.85 -11.3 -34.4618J 1.4327 -14.6478 2.01 -9.81 -33.8374J1812+0226 0..4437 6.16 -9.96 -33.8633J 1.20537 -13.719 4.2 -8.92 -33.1535J 0..0079 6.32 -10.1 -34.2699J 0..4237 11.54 -9.13 -32.8505J 1.26 9.62 -8.3 -33.4225J 0.315835 -15.752 14.71 -11.6 -35.1493J 0..5003 3.03 -11.2 -34.0867J 0..1805 4.61 -10.768 -16.4J 0..8962 4.7 -9.66 -30.9488J1813+1822 0..6778 6.24 -12.8 -35.7301J.426466 -14.6819 8.75 -10.4086 -15.541 -33.984J 0..3206 6.78 -12.3 -35.3986J 0.00443 -19.9031 3.37 -17.6 -36.8073J1813+4013 0..5935 4.32 -9.96 -33.9281J 1.05 4.37 -10.404 -16.2888 -34.4304J 1.36 5.63 -10.752 -16.903 -35.1545J1814+1130 0..7799 4.53 -10.8 -34.042J 0..1986 9.62 -9.59 -33.8931J 3.97591 -12.1278 9.77 -6.84 -32.4474J 0..1085 9.01 -9.12 -32.091J 1.24992 -13.4401 7.69 -8.61 -33.1531J 0..1884 3.21 -10.3 -32.7629J 0.5945 -14.8761 8.98 -10.4 -34.3338J 0..1391 6.48 -9.66 -33.5742J.592885 -16.1778 3.61 -11. -35.2385J1816+4510 0..3655 4.2 -17.9 -36.2232J 0..7144 3.06 -13.9 -36.2687J 0..8447 11.58 -10.2 -33.99J 2.07 10.74 -10.4892 -16.J 0..6882 3.78 -10.1 -33.5837J 0..2366 5.23 -11.6 -34.2702J 0.5448 -14.4179 10.29 -10.3 -33.8968J 0..6904 8.1 -10.1 -33.7937J 0..2111 7.96 -10.6 -33.2915J 0.93969 -14.3862 9.98 -9.73 -34.0885J 0..0141 8.24 -9.65 -33.4015J 0..1512 4.01 -10.3 -34.4635J 0..5045 11.1 -9.91 -34.2104J 0.30149 -14.8794 10.75 -10.8 -34.1203J 0..2472 5.82 -11.9 -34.2109J 1.38814 -15.1186 12.25 -10.2 -35.0794J1819+1305 1.09 4.41 -10.776 -16.J 1. 1.52 -10.4 -16.6338 -34.3167J 1.78849 -14.5867 12.45 -9.63 -34.6646J 4.26316 -12.2403 3.81 -6.92 -32.1812J 0..1051 5.61 -13.4 -35.9394J 0..4622 5.87 -10.3 -33.556J 0..1986 0.3 -9.75 -32.1827J 0..0306 2.81 -10.8 -33.7375J 0.92146 -14.3468 9.63 -9.74 -34.0251J 0..4214 9.6 -9.23 -32.6566J 0.309905 -16.0287 8.43 -11.894 -16.J1821+0155 0..5376 2.29 -16.4 -37.1563J 0..4295 2.55 -12.7 -35.1833J 0..5969 5.56 -9.94 -34.0275J 1.65601 -12.0482 11.93 -7.14 -32.0741J 1.91513 -14.27 6.95 -9.34 -34.1244J1821+1715 1.36668 -15.06 4.68 -10.8 -34.5961J1822+0705 1.36282 -14.757 3.02 -9.95 -34.1016J 2.50452 -15.3947 4.19 -10.6 -35.1458J 0.9747 -15.4498 12.31 -10.8 -35.2591J1822+1120 1.78704 -14.6289 8.77 -9.72 -34.5543J 2.07104 -13.0716 10.61 -8.19 -33.1437J 0.214771 -15.0424 7.77 -11.067 -15.J 0..7235 11.64 -10.4 -34.4394J 1.87 3.43 -9.95338 -16.J 0..3382 3.5 -11.8 -34.2719J 0..9469 4.56 -10.8 -34.2168J1823+907 -15.644 2 -11.1238 -16.Continued on next page
22 de Araujo, Coelho and CostaTABLE 1 – continued from previous pagePulsar P(s) log ˙Pd (kpc) log ?log ηlog hJ 0..8601 6.28 -10.2 -33.8352J 1.87 8.72 -8.2 -33.3748J 0..0177 11.14 -9.52 -33.5852J 1.6254 -14.3449 9.17 -9.4 -34.2484J 1.64 6.64 -10.697 -16.9975 -

我要回帖

更多关于 7447 的文章

 

随机推荐