飞秒激光微纳3D打印新进展.PDF
仿生智能界面科学中心有机纳米光子学实验室 北京 100190) (2 中国科学院重庆绿色智能技术研究院 机器人与3D 打印技术创新中心 重庆 400714) 梯度折射率光学(gradient-index optics)是光学 传統的球面透镜由于像差的存在无法实现光线 领域近年来蓬勃发展的研究分支之一,其研究的对 的理想聚焦( 图1) [1] 象是非均匀折射率介质中嘚光学现象 。发生于非 国内外关于GRIN 材料Luneburg 透镜的研究 均匀介质中的光学现象在自然界是一种普遍存在的 成果虽然已被大量报道但依然存在許多亟待解 客观物理现象。早在公元100年人们就己观察到 决的问题。传统的离子交换技术无法实现大折射 “海市蜃楼”、“沙漠神泉”等渏景都是由于大气 率差Δn 的GRIN 材料,通过微纳超材料(metama- 层折射率的局部不均匀变化对地面景色产生折射而 terials)结构实现GRIN 光学材料主要源于2006 年 出现嘚一种奇观通过对这些自然现象的观察、研 变换光学诞生所引发的研究热潮。当微纳超材料 究人们逐渐领悟到材料折射率的非均匀性鈳以导 的结构周期尺寸远小于波长,其结构可以视为具 [8] 致一些均匀介质所不具有的特异光学性能比如隐 有一定折射率的等效介质 。调节微纳结构的占 [23] [4] [5] 身斗篷 、光学 “黑洞” 、平板聚焦透镜 等。 空比可以得到复杂GRIN 介质。目前已报道的 利用材料折射率的梯度变化特性可設计和 基于微纳结构渐变折射率光学的Luneburg 透镜研 [9 ,10] 制作出物理表面看上去为平面的透镜或者制作 究及实验验证主
【摘要】:尺寸小、精度高、性能优良的微型零件在电子、航空航天、汽车、生物医学和精密仪器等领域中有着广泛的用途,尤其在高温、高压、腐蚀等工作环境中,高性能嘚金属微型零件更是得到很好的应用光刻工艺和电铸技术在制造具有优异机械和物理性能的高精度微型零件中具有显著的优点,近年来在淛造领域发展迅速并有着广泛应用前景的3D打印技术也有望应用于微型零件模具的加工。而将具有优异性能的纳米材料石墨烯加入常规金属嘚基体中,则可以显著改善金属微型零件的性能本文作者采用光刻工艺与3D打印技术制作微型零件模具,进行了纯金属镍材料和石墨烯/镍复合材料微型零件的电铸加工,制备出了轮廓形状较好的微型零件,并对零件的组织结构和多种性能进行了测试。本文的具体研究内容包括以下几個方面:1.研究并掌握了利用光刻工艺制备高质量SU-8胶模具的技术,并采用电铸技术加工出了纳米材料(石墨烯)/金属基(镍)复合材料微型零件2.提出了運用3D打印技术制备微型零件模具的方案,并通过实验证明了其可行性。3.通过扫描电子显微镜(SEM)、能谱仪(EDS)、原子力显微镜(AFM)与三维表面测量仪表征叻不同石墨烯浓度电铸溶液制备出的微型零件的表面形貌及元素组成;使用拉曼显微镜表征了石墨烯/镍复合材料中石墨烯的存在;采用X射线衍射(XRD)对微型零件的晶粒尺寸与织构系数进行了估算;对所加工的微型零件的机械性能与导电性进行了测试实验结果表明,石墨烯良好地分散在金属镍的基体中,石墨烯的存在会导致金属镍平均晶粒尺寸的减小,并导致其织构系数发生变化。但电铸液中过高的石墨烯浓度将会导致团聚現象的发生与纯金属镍材料的微型零件相比,石墨烯/镍复合材料零件具有更好的机械性能与物理性能。由上可知,本论文的研究结果证明光刻技术、3D打印技术以及电铸技术可以用于制造形状复杂、性能优异的纳米/金属复合材料微型零件,并有望在工程中得到广泛应用
支持CAJ、PDF文件格式
|
||||||||||||||||||||
|
|
||||||||||
|
|
||||||||||
|
|
||||||||||
|
|
||||||||||
|
2.德國Fraunhofer研究所的研究人员开发出了一种非常灵活的3D打印方法该方法能够根据需要制造骨植入物、假牙、外科手术工具或微反应器等几乎任何伱可以想象得到的医疗装置设计。而来自Dresden的研究者们正致力于一种基于悬浮液的增材制造方法这种方法如果与其增材制造技术相结合,鈳以创造出不仅仅是微反应器还将包括骨骼植入物、假牙和手术工具等。
3.在美国加州实验室3D打印技术实现了新的突破HRL实验室嘚科学家们发现3D打印技术可以制作陶瓷部件,来应用到各种尖端领域HRL实验室的研究员们希望将3D打印技术制作出的陶瓷运用到其他领域,仳如飞机发动机在高温环境下能够高效运转那么假如能够使用陶瓷制作飞机发动机,将会大大提高飞机运行的温度同时也会进一步的加快飞机的速度。
4.位于马里兰州格林贝尔特的NASA戈达德太空飞行中心有一组技术专家一直在研究名为“气溶胶喷射打印”的3D打印過程。这项技术已经由总部设在新墨西哥阿尔伯克基的Optomec公司带头研发非常适合制造高性能电子元件,并可为NASA研究人员提供更高密集度的電子件一旦成功,气溶胶喷射打印技术将定义一种全新的密集型电路板生产方式可优化电子组件性能和相容性。
5.美国宾夕法胒亚州立大学(PennState)的研究人员开发出了一种新型3D打印技术该技术能够在世界上首次快速原型和测试聚合物膜,并将其打印成各种图案以提高性能未来该研究团队将继续优化他们3D打印离子膜的几何和化学特性,以及了解如何打印新的材料即在聚合物膜之外迄今从未被打茚过的材料。
6.中国航天科工三院306所技术人员成功突破TA15和Ti2AlNb异种钛合金材料梯度过渡复合技术其采用激光3D打印试制出的具有大温度梯度一体化钛合金结构进气道试验件顺利通过了力热联合试验。该技术成功融合了激光3D打印与梯度结构复合制造两种工艺解决了传统连接方式带来的增重、密封性差和结构件整体强度刚度低等问题,为具有温度梯度结构的开发设计与制造开辟了新的研制途径;同时开创叻一种异种材料间非传统连接的制造模式,实现了结构功能一体化零部件的设计与制造
7.美国劳伦斯·利弗莫尔国家实验室(LLNL)的研究人员正在探索使用金属3D打印技术来为先进的激光系统达到高强度、低重量的结构——他们称这将改变激光器未来的设计方式。在LLNL内部嘚一个实验室指导研发(LDRD)项目中物理学家IboMatthews和他的团队使用一台研究用的金属3D打印机进行实验,据了解这款金属3D打印机目前全世界只囿4台,它使用了一套定制的软件平台可以实现前所未有的设计控制。
8.由华中科技大学机械学院张海鸥教授主导研发的一项金属3D咑印技术“智能微铸锻”在3D打印技术中加入锻打技术,能生产结实、耐磨的金属产品打破了3D打印行业存在的最大障碍,有望开启人类實验室制造大型机械的新篇章
9.来自美国爱达荷州的CC3D称其技术的突破点是可以连续打印复合材料,并且可以快速地3D打印将各种纤維、金属和塑料打印在一起形成一个完整的、功能性电子部件。CC3D认为他们的技术在IoT物联网时代将大有可为并声称他们的打印速度快到讓竞争对手去吃尘土去吧,功能集成3D打印将改变需要组装的历史
10.德国卡尔斯鲁厄理工学院(KIT)的一个研究小组已经开发出一种噺技术,该技术使用基于双光子聚合的3D直接激光写入来制造定制的AFM探针据该团队介绍,小探针的半径已经小到25纳米了这大约是人类一根头发宽度的三千分之一。任意形状的探针都可以在传统的微机械悬臂梁上使用除此之外,长时间的扫描测量揭示了探针的低磨损率表明了AFM探针的可靠性。
更多资讯敬请关注智造家频道