自由基是什么意思?

自由基是什么?对人体有何危害
eaDW12XF19
自由基是什么 自由基(free radical),化学上也称为“游离基”,是含有一个不成对电子的原子团.我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基.自由基是极活泼、极不稳定、生命期极短的化合物.自由基会在机体氧化反应中产生的有害化合物,具有强氧化性,可损害机体的组织和细胞,进而引起慢性疾病及衰老效应.自由基的危害 自由基具有高度的氧化活性它们极不稳定,活性极高,它们攻击细胞膜、线粒体膜,与膜中的不饱和脂肪酸反应,造成脂质过氧化增强.脂质过氧化产物(mda等)又可分解为更多的自由基,引起自由基的连锁反应.这样,膜结构的完整性受到破坏,引起肌肉、肝细胞、线粒体、DNA、RNA等广泛损伤从而引起各种疾病,诸如炎症癌症 扩张性心肌病,老年性白内障 哮喘等疾患.故自由基是人体疾病、衰老和死亡的直接参与和制造者.尤其可怕的是,自由基若入侵细胞核,会破坏DNA,DNA若被切断,而使得人体的修补酵素无法修复DNA时,则将使基因产生突变,从而引起多种疾病,如心脏病、老年痴呆症、帕金森病和肿瘤.自由基更是癌症、老化的元凶.
为您推荐:
其他类似问题
扫描下载二维码自由基是什么?
自由基是什么?
09-02-24 &
自由基又称活性氧,是一个极小的微粒。它来源于两个渠道:一是在机体本身氧化代谢过程中不断产生;二是环境污染、辐射、不良生活习惯等,也会不断产生自由基。 ??自由基可称万恶之源,百病元凶。人体的老化、许多疾病的产生都与其密切相关。 ??它所形成的脂质过氧化物,能够损害生物膜,破坏细胞,阻碍正常的新陈代谢,加速衰老,并能引起诸如癌症、白血病、高血压、心肌梗塞、糖尿病、肝炎、痛风、肾炎、白内障等多种疾病。 ??维生素C和维生素E被称为“自由基清道夫”。维生素C可以中和自由基的氧化作用,阻断其连锁反应。 ??此外,植物中富含的化学成分黄酮、醇、酚、甾体化合物等,也有很强的抗氧化作用,可以消除过多的自由基。 ??限量饮食,也可以减少自由基的产生。一项有趣的实验表明:以自由摄食、八成摄食、六成摄食分别饲养小鼠,以后者寿命最长。这提示我们,不可过量饮食,七、八分饱足矣。再有,少吃油炸食品、肥肉;戒烟;少饮酒;减少辐射,都可以减少自由基的产生及其在体内的连锁反应,使我们远离疾病,健康长寿。
请登录后再发表评论!
机体氧化反应中产生的有害化合物,具有强氧化性,可损害机体的组织和细胞,进而引起慢性疾病及衰老效应。  有机化合物(Organic compounds)发生化学反应时,总是伴随着一部分共价键(covalent bond)的断裂和新的共价键的生成。共价键的断裂可以有两种方式:均裂(homolytic bond cleavage)和异裂(heterolytic cleavage)。键的断裂方式是两个成键电子在两个参与原子或碎片间平均分配的过程称为键的均裂(homolytic bond cleavage)。两个成键电子的分离可以表示为从键出发的两个单箭头。所形成的碎片有一对未成对电子,如H·,CH·,Cl·等。若是由一个以上的原子组成时,称为自由基(radical)。因为它有未成对电子,自由基和自由原子非常的活泼,通常无法分离得到。不过在许多反应中,自由基和自由原子以中间体的形式存在,尽管浓度很低,存留时间很短。这样的反应称为自由基反应(radical reactions)。  自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。  近年来,随着我国人民物质生活水平和对生活质量的要求不断提高,人们对保健知识的需求也与日俱增,近一段时间内,在有关保健知识的传播中,一个新的名词--自由基出现的频率越来越高,保健用品中、化妆品中、烟草中、日常食品中等…..那么,究竟什么是自由基,它与我们人类的健康有什么关系呢?  简单的说,在我们这个由原子组成的世界中,有一个特别的法则,这就是,只要有两个以上的原子组合在一起,它的外围电子就一定要配对,如果不配对,它们就要去寻找另一个电子,使自己变成稳定的元素。科学家们把这种有着不成对的电子的原子或分子叫做自由基。  自由基非常活跃,非常不安分。就象我们人类社会中的不甘寂寞的单身汉一样,如果总也找不到理想的伴侣,可能就会成为社会不安定的因素。那它是如何产生的呢?又如何对人的身体产生危害的呢?早在上个世纪末90年代初期,中国大陆对自由基的认知来自于北京卷烟厂在出口产品定单中外方产品的要求,外方,尤其是日本提出,吸烟有危害身体健康,不仅仅是尼古丁,焦油,还有一种更危害的物质是自由基。  当一个稳定的原子的原有结构被外力打破,而导致这个原子缺少了一个电子时,自由基就产生了。于是它就会马上去寻找能与自己结合的另一半。它活泼,很容易与其他物质发生化学反应。  当它与其他物质结合的过程中得到或失去一个电子时,就会恢复平衡,变成稳定结构。这种电子得失的活动对人类可能是有益的也可能是有害的。  一般情况下,生命是离不开自由基活动的。我们的身体每时每刻都从里到外的运动,每一瞬间都在燃烧着能量,而负责传递能量的搬运工就是自由基。当这些帮助能量转换的自由基被封闭在细胞里不能乱跑乱窜时,它们对生命是无害的。但如果自由基的活动失去控制,超过一定的量,生命的正常秩序就会被破坏,疾病可能就会随之而来。  所以说自由基是一把双刃剑。认识自由基,了解自由基对人体的作用,对健康十分必要。
请登录后再发表评论!
自由基又称活性氧,是一个极小的微粒。它来源于两个渠道:一是在机体本身氧化代谢过程中不断产生;二是环境污染、辐射、不良生活习惯等,也会不断产生自由基
请登录后再发表评论!
自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。在化学中,这种现象称为“氧化”。我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。加上过氧化氢、单线态氧和臭氧,通称活性氧。体内活性氧自由基具有一定的功能,如免疫和信号传导过程。但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。如心脏病、老年痴呆症、帕金森病和肿瘤。此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。
请登录后再发表评论!
所谓自由基,是指带有不配对的电子的分子基因。自由基的各类很多,用来说明衰老发生机制的自由基,主要是超氧自由基、羟自由基和类脂质过氧化自由基。其中,超氧自由基作用的产物,都是强氧化剂,可使类脂质中的不饱和脂肪酸氧化为类脂过氧化物。它们都是引发脂质过氧化自由基反应的氧化剂,在正常情况下,由于生物体内存在自由基清除剂,如性激素、sod、过氧化氢酶等使生物体内自由基的产生与清除保持相对平衡,并参与许多正常的生理生化反应。若自由基清除剂的合成恶性化或自由基反应发生紊乱,则会导致机体一系列的病理改变。    一、自由基对人体的危害: 1 、自由基摧毁细胞膜,导致细胞膜发生变性,使得细胞不能从外部吸收营养,也排泄不出细胞体内的代谢废物,并丧失了对细菌和病毒的抵御能力。从而使人体免疫力低下、疲劳和器官病变。如果导致细胞死亡或细胞内杂质无法代谢就会形成色素沉积,产生黄褐斑、蝴蝶斑、老年斑等。 2 、自由基攻击正在复制中的基因,造成基因突变,诱发癌症发生。 3 、自由基激活人体免疫系统,使人体表现出过敏反应,如过敏性鼻炎,过敏性哮喘、过敏性皮炎、花粉过敏、食物过敏等,或出现经斑狼疮等的自体免疫疾病。 4 、自由基作用于人体内分泌系统,导致胶原蛋白酶和硬弹性蛋白酶的释放,这些酶作用于皮肤中的胶原蛋白酶和硬弹性蛋白并使这两种蛋白产生过度交联并降解,结果使皮肤失去弹性,出现皱纹及囊泡。 5 、与 4 相类似的作用使体内毛细血管脆性增加,使血管容易破裂,这可导致静脉曲张,水肿等与血管通透性升高有关的疾病的发生。 6 、自由基侵蚀脑细胞使人易患老年性痴呆症。 7 、自由基侵蚀机体组织,可激发人体释放各种炎症因子,导致出各种非菌性炎症。 8 、自由基氧化血液中的脂蛋白造成胆固醇向血管壁的沉积,引起心脏病和中风,动脉硬化,脑血栓,脑溢血,偏瘫,高血压等心脑血管病症。 9 、自由基引起关节膜及关节滑液的降解,从而导致关节炎。 10 、自由侵蚀胰脏细胞引起糖尿病。 11 、自由基损伤肝脏器官导致肝炎。
请登录后再发表评论!
所有的物质都带有原子和分子,他们又需带有两个电子才能维持安定,自由基指的则是一个或多个不成对电子的原子或分子,因此必须拉取附近的电子加入其中,以保持安定,这些被拉取的往往是蛋白质、碳水化合物、糖类、脂肪等有益的物质,这些有益的物质成为自由基后,又会再去拉其它的电子,形成恶性循环的自由基连锁反应,进而破坏体内的细胞膜、蛋白质、核酸等,造成过氧化物的堆积,使人体有用的功能逐渐丧失,甚至引发疾病。
请登录后再发表评论!
自由基,因其能够引发许多疾病和加速衰老而“臭名远扬”。那么何谓自由基?简单的说,就是在我们这个由原子组成的世界中,有一个特别的法则,只要有两个以上的原子组合在一起,它的外围电子就一定要配对,如果不配对,它们就要去寻找另一个电子,使自己变成稳定的元素。科学家们把这种有着不成对的电子的原子或分子叫做自由基。     当一个稳定的原子的原有结构被外力打破,而导致这个原子缺少了一个电子时,自由基就产生了。它非常活跃,强烈的渴望寻找到能够与自己结合的另一个电子,有时甚至去抢别人的电子,也就容易与其他物质发生化学反应。当它与其他物质结合的过程中得到或失去一个电子时,就会恢复平衡,变成稳定结构。这种电子得失的活动是自由基让细胞失去正常的生理功能,从而导致疾病的产生根本原因。
    一般情况下,每个人的身体内都免不了会产生自由基,因为人体要新陈代谢,身体每时每刻都从里到外的运动,每一瞬间都在燃烧着能量,而负责传递能量的搬运工就是自由基。当这些帮助能量转换的自由基被封闭在细胞里时,它们对生命是无害的。而且人体内有一套抗氧化的免疫系统与物质可以消除自由基,借助充足的营养,这套系统可以维持正常运转。但如果自由基的活动失去“控制”,超过一定的量,生命的正常秩序就会被破坏,疾病可能就会随之而来。
    自由基对细胞和组织的损伤是其致病的基础,由于人体是由各种各样不同功能的细胞组成,因而自由基对不同细胞的损伤可导致表面看起来毫无关联的疾病。
    如:当产生自由基大于清除自由基时候,就会攻击细胞:当自由基攻击细胞膜时,就会引起心血管疾病,使不饱和脂肪酸变成饱和脂肪酸,使得细胞不能从外部吸收营养,也排泄不出细胞内的代谢废物,并丧失了对细菌和病毒的抵御能力;当自由基攻击细胞质时,就会产生多种炎症,导致细胞衰老;当自由基攻击细胞核时会攻击正在复制中的基因,甚至会破坏细胞内的DNA,加速人体的衰老,并导致癌症的产生。自由基导致衰老的加速,衰老又使得人体在“控制”自由基方面的功能减弱,自由基和衰老使得人体的健康陷入了一个恶性循环;
    自由基侵蚀眼睛晶状体组织会引起白内障。研究发现,老年人易患白内障与体抗自由基能力降低有关,老年性白内障患者眼液(包括眼水和玻璃状体液)中自由基比正人要高2-3倍。检查发现,自由基过氧产物在白内障患者眼液中明显升高,而且褐色白内障比黄色白内障含量高,说明自由基或自由基过氧物在白内障形成过程中,具有重要作用。
    正情况下,眼内既有自由基产生,又有自由基清除系统,使自由基产生和清除处于一种动态平衡。但随着年龄增加,眼内清除自由基能力逐渐降低,自由基(包括Ⅱ202、氧自由基、羟自由基等)在眼内产生就出现过剩、过剩自由基除了氧眼内蛋白质、眼内酶及膜蛋白中重要---SH基使蛋白交联和酶蛋白活性丧失外,自由基对晶状体膜脂质过氧也是导致白内障发并重要因素。脂类过氧过程中产生各种自由基也可以氧蛋白质成分中氨基酸,从而破坏蛋白质结构。脂质过氧物与蛋白质、磷脂相互作用,以及蛋白交联形成了不溶性高分子量产物,逐渐使晶状体透明度降低。由于晶状体不能合成蛋白,而且代谢能力也很低,所以受损害晶体蛋白就不能以分解方法被消除,也不能以新蛋白质来代替,从而导致白内障发生。
    自由基侵蚀胰脏细胞引起糖尿病。糖尿病的病因是由于胰脏分泌胰岛素绝对或相对不足,导致糖、脂肪、蛋白质代谢和水,解质紊乱,出现血糖升高,尿糖阳性。糖尿病临床表现为“三多一少”,即多饮、多食、多尿和体重减轻。     糖尿病的发生与多种因素有关,例如高血压、肥胖、吸烟等都可能引发糖尿病。目前新研究发现糖尿病与自由基对胰脏B细胞损伤有关。正情况下,胰B细胞是生产和分泌胰岛素基本单位,其本身含有清除自由基系统,所以自由基不会引起胰脏B细胞损害。但是,在学或免疫因素作用下,B细胞回受到损害,其抗自由基能力降低,引起自由基大量集聚,破坏B细胞结构,影响其分泌胰岛素,最终引起糖尿病。实验发现,I型糖尿病(胰岛素依赖型糖尿病)和Ⅱ型糖尿病(非胰岛素依赖型糖尿病)患者血清中,自由基含量都明显增加,抗氧系统却明显降低。糖尿病合并血管病变者,血管自由基含量增加更明显,清除自由基能力也明显降低,所以,自由基损伤是糖尿病及其并发症重要因素。自由基不仅破坏B细胞结构,影响胰岛素分泌,而且自由基对不饱和和脂肪酸过氧产物,可以引起小动脉纤维性病变、动脉硬和心血管疾病,抑制前列腺环素生物合成,使抗凝血因子失活,血流处于高凝状态,易于诱发血栓形成,使微循环障碍,出现大血管和微循环病变。所以,清除自由基是预防和治疗糖尿病及其并发症重要途径。     自由基可以引发冠心病。冠状动脉硬性心脏病是由冠状动脉粥样硬引起一种心脏病,简称冠心病。研究表明,动脉粥样硬患者血浆中脂质过氧物含量增加,与胆固醇和甘油三脂含量呈正相关。这些都证明动脉粥样硬发生发展某些特定病理过程和环节与脂质过氧损伤有关,而脂过氧则由自由基所引发。一方面,自由基和脂质过氧物可引起血管内皮细胞肿胀和破损,从而导致动脉硬发生。另一方面,低密度脂蛋白受到自由基作用,形成过氧低密度脂蛋白,大量沉积于血管内皮细胞,最终形成动脉粥样硬。此外,过氧低密度脂蛋白可以吸引血小板聚集,促使自由基大量产生,从而加速动脉粥样硬发展。
    1985年Soldats等发现,自由基在急慢性胃炎、消道溃疡和胃癌发病过程中,起着非重要作用,检查发现消道溃疡、急、慢性胃癌患者血清中自由基含量明显升高,自由基清除能力却下降。
    胃粘膜和十二指肠粘膜具有很强产生自由基能力,正常情况下,体内含有清除自由基防御系统,使其生成量不至于达到损伤组织程度。然而,体清除自由基能力是有限。在学物质作用下,或在应激条件下(如饥饿、精神紧张等)交感——肾上腺系统兴奋,引起消化道血管收缩,使粘膜处于缺血状态,以致缺血再恢复过程中,通过NADPH氧还原循环及黄膘吟氧酶催,产生大量自由基。另外,溃疡患者往往伴有胃、十二指肠炎症,这就吸引大量白细胞聚集,通过白细胞呼吸爆发产生大量自由基来消灭细菌。这些自由基产生超出了体清除能力,使自由基在消化道粘膜过剩。过剩自由基引起粘膜细胞膜上脂类过氧,破坏细胞结构和功能,使消粘膜屏障被破坏,最终导致溃疡发生。
    研究表明,自由基是肝脏疾病一个重要因素。 1978年,阿布裕等报告,自由基过氧作用在病毒性肝炎,药物性肝炎、肝硬等肝病肝损伤理中起重要作用。动物实验证实,毒性物质可引起体内自由基明显升高,肝内自由基过氧物明显增多,肝细胞大量坏死,血清谷丙转氨酶含量增加,因此,肝性疾病发生与肝脏内自由基或自由基过氧物对肝细胞损伤有关。肝脏是体内最大分泌器官,参与食物消,另外,肝脏又是一个解毒器官,许多有害物质,包括药物,学物质等,都要在肝脏内转成对体害物质,这个过程中会产生大量自由基,当自由基产生超过清除能力时,就会出现肝脏疾病。自由基引起肝细胞微粒体膜磷脂中多价不饱和脂肪酸发生脂质过氧,破坏细胞膜及内膜结构,使肝脏受损。此外,自由基极易与膜蛋白、酶蛋白结合,降低细胞中抗氧物和蛋白含量,使细胞器中酶性及膜功能降低,影响物质在肝脏中代谢。毒性物质在肝脏内直接转为高度反应活性自由基,后者极易与膜不饱和脂肪酸结合,破坏肝细胞结构,导致肝细胞坏死,肝功能降低,血清中出现肝细胞内某些酶。
    自由基在肾脏疾病发生发展过程中也起着非重要作用。肾脏病是一种见和多发病,如急、慢性肾小球肾炎、间质性肾炎、肾盂肾炎、肾动脉硬、肾功能不全等。肾脏感染、免疫损害、毒性物质损害、缺血等因素,都会引起肾脏白细胞浸润和缺血再恢复,引发产生大量自由基。正常情况下,肾脏具有清除自由基能力,如肾脏内MT过氧氢酶等都是自由基清除剂,使自由基产生和清除保持一种动态平衡。但是当自由基产生超过清除能力时,或年龄增长导致体清除自由基能力下降,自由基就会在体内聚集。过剩自由基就引起细胞;组织损伤过程,自由基可以破坏肾小球、肾小管细胞结构或基膜结构,或损伤血管内皮细胞,使细胞功能结构受到破坏,释放、吸收和再吸收功能降低,尿中就会出现蛋白、红细胞等。
    另外,自由基作用于人体内酶系统,导致胶原蛋白酶和硬弹性蛋白酶的释放,这些酶作用于皮肤中的胶原蛋白和硬弹性蛋白并使这两种蛋白产生过度交联并降解,结果使皮肤失去弹性、松驰无力,甚至出现皱纹及囊泡,使人显得老态龙钟;自由基激活人体免疫系统,使人体表现出过敏反应,或出现如:红斑狼疮等的自体免疫疾病,类似的作用使体内毛细血管脆性增加,使血管容易破裂,这可导致静脉曲张、水肿等与血管通透性升高有关疾病的发生;自由基侵蚀机体组织,可激发人体释放各种炎症因子,导致出各种非菌性炎症;自由基侵蚀脑细胞,使人得早老性痴呆的疾病;自由基氧化血液中的脂蛋白造成胆固醇向血管壁的沉积,引起心脏病和中风;自由基引起关节膜及关节滑液的降解,从而导致关节炎。
请登录后再发表评论!羟基自由基_百度百科
羟基自由基
羟基自由基(.OH)是一种重要的活性氧,从分子式上看是由(OH-)失去一个电子形成。羟基自由基具有极强的得电子能力也就是氧化能力,氧化电位2.8v。是自然界中仅次于氟的氧化剂。
羟基自由基电生羟基自由基的应用
近年来,浓度高且结构稳定的有机废水不断出现,如何有效地去除这些难降解的有机废水已经成为水处理的热点问题。羟基自由基(·OH)因其有极高的氧化电位(2.80EV),其氧化能力极强,与大多数有机污染物都可以发生快速的链式反应,无选择性地把有害物质氧化成CO2、H2O或矿物盐,无二次污染[1]。目前国内外有不少研究者进行利用·OH处理有机废水的研究。产生·OH的途径较多,主要有法[2]、氧化法[3]、臭氧法[4]、超声降解法[5]和光催化法[6]。近年来应用电化学法产生·OH处理有机废水获得了较大的进展,在降解和脱色上卓有成效。下面就对电生·OH的途径及其在有机废水处理中应用的最新进展进行评述。
羟基自由基制取方法
羟基自由基电Fenton法
工艺上将Fe2+和H2O2的组合称为。它能有效地废水中的有机污染物,其实质是H2O2在Fe2+的催化下产生具有高反应活性的·OH。目前,Fenton法主要是通过光辐射、催化剂、作用产生·OH。利用光催化或光辐射法产生·OH,存在H2O2及太阳能利用效率低等问题。而电Fenton法是H2O2和Fe2+均通过持续地产生[7],它比一般化学Fenton试剂具有H2O2利用率高、费用低及反应速度快等优点。因此,通过电Fenton法产生·OH将成为主要途径之一。
应用电Fenton法产生·OH处理有机废水多数是以平板铁为阳极,多孔碳电极为,在阴极通以或空气。通电时,在阴阳两极上进行相同的,在相同的时间内分别生成相同物质的量的Fe2+和H2O2,从而使得随后生成Fenton试剂的化学反应得以实现[8]。
溶液的pH值对氧阴极还原获得H2O2的反应有很大的影响[9]。研究表明,溶液的pH值不仅对阴极反应电位和槽电压有影响,还将决定着生成H2O2的,进而影响随后生成·OH的效率及与的降解脱色反应。
自20世纪80年代中期后,国内外已广泛开展了对电Fenton法机理及其在有机废水中的应用进行了研究。Hsiao等[10]用石墨作阴极对酚和氯苯的氧化进行了研究,结果表明,该法对酚和氯苯的氧化处理比光Fenton法彻底。郑曦[11]等以可溶性铁为,多孔石墨电极为阴极,Na2SO4为支持质,于电解现场产生Fenton试剂,在低电流密度(10 mA/cm2)下,可有效地抑制阴、阳两极的发生,所产生的·OH浓度足以有效地降解染料废水,达100%,CODCr去除率达80%。另外,电Fenton法与其它方法结合处理废水,不少研究者对其进行了研究[12],取得了一定的成效。Brillas等[13]分别用Pt作阳极和充氧的碳-聚四氯乙烯作阴极,对2,4-D(氧基乙酸)进行降解处理,浓度低时2,4-D的矿化程度高达90%,若与光Fenton法相结合,2,4-D可完全矿化。Kusvuran等[14]还以RR120有机染料废水作为研究对象,比较分析了电Fenton法与其它方法的处理效果,结果表明,湿空气氧化法、光电Fenton法、UV/TiO2的降解效果较为理想,电Fenton法次之。
羟基自由基电解氧化法
在外加电场作用下可以直接或间接产生具有强氧化活性的·OH[15]。这种方法的特点基本无,符合环保的要求。长期以来,由于受到电极材料的限制,该法降解处理的电流效率低,能耗大,因而较少直接应用于实际废水处理中,阳极材料的研究自然也成为主要的研究方向。80年代后,国内外许多研究者从研制高的电极材料入手,对产生·OH的机理和影响降解效率的因素进行研究,取得较大的突破,并开始用于特种难生物降解的有机废水的处理。如宋卫峰[16]等提出用制作的二维稳定阳极(简称DSA)对有机物进行,取得了一定的效果。但由于传统的二维平板电极的表面积较小,传质问题仍未能根本解决,电流效率低,能耗高,故未能在实际中得到普遍应用。相比之下,三维电极因其面体比增大,传质效果较好, 已得到不少研究者的青睐,并取得一定成效。何春等[17]利用三维电极电化学反应器新技术能有效地去除有机废水的苯胺。有的研究者采用廉价的不锈钢作为电极材料,研究了二维电极法和三维电极法的处理效果及其机理。熊蓉春等[18] 就用此法对罗丹明B染料废水进行处理,实验结果表明,不锈钢电极材料对有机污染物具有较好的电催化降解作用,尤其是采用三维电极法时,能在较短时间内达到优异的水处理效果。比色法的测定结果发现,不锈钢电极材料在降解过程中产生了氧化能力极强的·OH。崔艳萍等[19]还研究了在复极性三维电解槽中在填充粒子和通入空气条件下的过程,利用的直接、阳极·OH和阴极产生H2O2的间接氧化作用,从而在较低能耗的情况下,充分提高填充粒子的利用率,达到了较好的降解效果。Duverneuil等[20]用沉积了SnO2的Ti作为阳极,对有机废水进行降解研究,获得了满意的去除效果。
然而,氧化法工业化应用仍存在着一些问题,如仍然偏低、能耗大、降解反应器的效率较低、催化降解有机污染物的机理还需要进一步探讨等[21]。加强对上述问题的研究,是该法今后发展的方向。
羟基自由基半导体电催化法
由于某些半导体材料有良好的光化学特性和活泼的行为,近年来,利用半导体材料制成电极在有机废水中的研究应用已引起众多研究者的重视[22]。
半导体催化材料在中有“”效应[23],即半导体处于一定强度的电场时,其会越过禁带进入,同时在价带上形成电激空穴,空穴有很强的俘获电子的能力,可以夺取半导体颗粒表面的有机物或溶剂中的电子发生氧化还原反应。在发生的电反应中,水分子在半导体表面失去电子生成强氧化性的·OH,同时半导体催化剂和电极产生的H2O2等活性氧化物质也起协同作用,因此,在电体系中存在多种产生强氧化因子的途径,能有效地提高了催化降解的效率。在半导体电催化反应中,电压和电流强度都要达到一定的值。一般来说,随着外加电压的升高,体系产生·OH的速率增大,有机物的去除效率提高[24]。但也有研究发现,当外加电压达到一定值时,进一步升高电压会抑制自由基的生成,降低了催化效率[25]。
半导体法在有机中的研究,主要以在掺杂和纳米半导体材料电极作为阳极产生·OH处理有机废水。董海等[26]采用掺锑的SnO2粉制成的半导体电极,研究了含酚废水的电催化降解反应,对酚的降解率达90%。
羟基自由基半导体光电催化法
在等照射下,并外加电场的作用下TiO2半导体内也会存在“”效应,这种光电组合产生·OH的方法又称法。TiO2光电组合效应不但可以把电子的还原过程同价带空穴的氧化过程从上分开(与半导体微粒相比较),明显地减少了简单复合,结果大大增加了半导体表面·OH的生成效率且防止了氧化中间产物在上的再还原,而且导带电子能被引到阴极还原水中的H+,因此不需要向系统内鼓入作为剂的O2[27]。
由于上述优势,光电催化技术在有机废水的研究工作得到了迅速发展,戴清等[28]利用TiO2薄膜电极作为,建立了电助光催化体系,以含氯苯酚(例如4-氯苯酚和2,4,6-)废水作为降解对象,进行光电催化研究。 Cheng 等[29]用三维电极降解处理亚甲基兰废水,研究表明,其和COD的去除率分别为95%和87%。Waldne等[30]用TiO2半导体光电催化法进行降解4-氯苯酚的研究,取得较好处理效果。
目前,光电化学反应的研究工作还大多局限于实验室阶段,应用纳米TiO2光电催化法处理大规模工业有机废水的报道还不多,主要是由于TiO2半导体重复利用率不高和光电催化反应器光电催化效率降低。因此,把TiO2经过改性、修饰制备成高效且能重复使用的电极,如在TiO2材料表面上进行贵金属沉积、掺杂金属离子、、表面光等[31],已成为以TiO2为半导体电极进行降解研究的热点。此外,这项技术的实用化必然涉及到反应器的结构和类型的确定,开发高效重复使用且费用较低的工业化光催化反应器,也将是纳米TiO2工业化应用的关键。
羟基自由基展望
尽管国内外处理有机废水技术已有了很大的发展,其中不少已达到工业化应用的水平,但电化学作为一门能在净化环境中有所作为的学科,还在不断发展中。电生·OH在有机中有其独特的特点,其应用的前景是很乐观的。但仍存在一些问题需要解决:
(1)目前,电Fenton法的研究还不是很成熟,电流效率低,设计合理的结构和寻找新型的电极材料将是今后研究的方向。
(2)通过电解氧化法产生·OH处理有机废水处理,其降解效率受材料和结构、、电解质及其传质能力等多种因素的影响。目前电解槽的传质问题影响的提高,如果要应用到实际生产中,还需提高产生·OH的电流效率,降低成本。因此,加强电解催化的机理的研究,研制开发各种高效电解催化反应器和高活性及性能稳定的电极材料等,是今后急需解决的问题。
(3)用纳米半导体光电催化氧化法是目前研究的热点,如何获得并提高半导体材料光电,开发高效、稳定能重复使用、价格低廉的材料和工业光电催化反应器是今后在该领域研究的热点,也是使纳米TiO2应用于工业化的关键。

我要回帖

更多关于 自由基的危害 的文章

 

随机推荐