我买冰晶盒要加水吗里有结晶然后加水冻的可以吗

冰晶重结晶抑制
ice recrystallization inhibition
关键词:植物;抗冻蛋白;热滞效应;冰晶重结晶抑制
[gap=15326]Key words:plant;antifreeze proteins;thermal hysteresis;ice recrystallization inhibition
基于4个网页-
抗冻蛋白能够与冰晶结合,降低冰点并抑制冰的重结晶,从而使生物体免于冰冻伤害。
Antifreeze proteins protect organisms from freeze by binding to the ice crystal, decreasing ice point and inhibiting ice recrystalization.
抗冻蛋白是一类广泛存在的具有热滞活性、能改变冰晶生长特性和抑制冰晶重结晶的蛋白质。
Antifreeze proteins(AFPs), with the thermal hysteresis activity, are wildly distributed proteins which can change the growth and inhibit the recrystallization of the ice.
抗冻蛋白具有特殊的功能和热滞迟性质,能够降低冰点, 抑制冰晶的生长和重结晶, 修饰冰晶的形态。
Antifreeze proteins have special functions and characteristics of thermal hysteresis. They can lower the freezing point, inhibit ice growing and recrystallization, and modify ice morphology.
$firstVoiceSent
- 来自原声例句
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!
请问您想要如何调整此模块?
感谢您的反馈,我们会尽快进行适当修改!微冻技术——冰结晶原理
我的图书馆
微冻技术——冰结晶原理
微冻技术——冰结晶原理
&食品都是由无数的细胞组成的。细胞质(细胞内的液体)与细胞间质(细胞与细胞的间的液体)中存在着蛋白质、糖、无机盐等物质,细胞质比细胞间质的浓度要大。当外界温度降低到细胞间质的冰点时,细胞间质中就会产生大量细小的冰晶;当温度进一步下降达到细胞质的冰点时,细胞质中也产生冰晶。
& 但是由于细胞质和细胞间质产生冰晶的时间先后不同及两者浓度上的差异,产生的冰晶数量也远远不同,并由此产生一定的压力差。当这种压力差达到一定程度时,就会破坏细胞膜,在细胞膜上形成许多足以使营养物质自由出入的通道。
&当食品解冻时,细胞质内的大量营养物质就会通过这些通道流失(常规冻结的食品在解冻时,解冻水会有大量泡沫,这些泡沫就是营养物质),大大降低了食品的营养价值。
&通过试验证明,食品中产生的冰结晶的大小、分布情况与通过最大冰结晶生成区有关。在越短的时间内通过最大冰晶生成区,细胞膜所受到的压力差就越小,细胞就越不会被破坏。常规冻结的一个明显缺点通过最大冰晶生成区的时间比较长,因此无法避免地在细胞膜内外产生不均衡压力差,破坏细胞膜,导致解冻后的营养流失。
&微冻液可以快速传导温度使水分子瞬间抑制冰结晶生成,维持低温状态,食材全部瞬间锁水冷冻,保持鲜味。水分子与冻结前相同状态结冻,因此食材的鲜美口味、营养皆保持原状态,达到全价保鲜的效果。
此文由大连久隆科贸发展有限公司提供
馆藏&32597
TA的最新馆藏[转]&[转]&[转]&[转]&[转]&[转]&
喜欢该文的人也喜欢一(7)钮梓萱 雪花是如何形成的?
雪花是空中的水汽遇冷凝结成的。在一般情况下,水汽先凝成水,然后才能结冰,但雪花却是直接由水汽凝结成的(人们也把这个过程叫做&凝华&)。当气温降低,空中水汽变为过饱和时,就会在结晶核(如尘埃)上开始结晶,然后逐步长大形成雪花。
根据热力学知识,湿空气(就是含有水蒸气的空气)中水蒸气的分压力和它的含量呈正比,它能达到的最高压力就是这个温度下的饱和压力,这时水蒸气的含量也就达到了最大限度,所以人们常常称之为&饱和湿空气&。而且,热力学的知识还告诉我们:在这种饱和状态下,水的三种存在形式,或者说,固态(冰)、液态(水)和气态(蒸气)三个相(即固相、液相和气相)处于平衡,不同相之间可以相互转化。
所以,当气温降低时,空气中原来处于饱和的水汽就&过&饱和了,它会在微尘之类的&核&上凝结,依照气温的高低不同,可以生成水滴或冰晶(有时二者同时存在)。我们看到的云,就是停留大气层上的水滴或冰晶的集合体。如果基本上是水滴,就叫做&水云&;如果以冰晶为主,就叫做&冰云&。 云中雪花&胚胎&的小冰晶,主要有两种形状。一种是六棱体状,长而细,叫&柱晶&;其中,有些柱晶的两端是尖的,就叫&针晶&。另一种则是六角形的薄片状,叫&片晶&。
到现在为止,人们已经知道的雪花大约有两万多种不同的图案,不过它们基本上是六角形的,这就是从片晶发育而成的。为什么是六角形呢?这和水的结晶习性有关。天然水冻结的冰和大气中水汽凝华的雪,都属于六方晶系。大家知道,水分子是由两个氢原子以及一个氧原子以一种很强的键&&共价键而结合在一起的。在形成固态冰晶时,它们会利用氢键结合在一起,相对来说,最稳定的排列方式是以六角形状把六个水分子黏在一起,所以大部份冰晶是六角形的。 那么,我们看到的星状雪花六瓣星状雪花又是怎样长成的呢?原来,在冰晶在相互碰撞过程中合并、增长的同时,冰晶附近的水汽会被消耗。所以,越靠近冰晶的地方,水汽含量越少,过饱和程度越低。在紧靠冰晶表面的地方,因为多余的水汽都已凝华在冰晶上了,所以刚刚达到饱和。这样,靠近冰晶处的水汽含量就要比离冰晶远的地方小。水汽就从远处向冰晶处运移。水汽分子首先遇到冰晶的各个角棱和凸出部分,并在这里凝华。于是冰晶的各个角棱和凸出部分将首先迅速地增长,而逐渐成为枝叉状。随后,由于同样的原因,远处输运来的水汽会在刚形成的各个枝叉和角棱处长出新的小枝叉来。这样,片状冰晶就慢慢地演化成了我们熟悉的星状雪花。 最有利于云滴增长的是混合云,混合云是由冰晶和过冷水滴共同组成的。
当一团空气对于冰晶说来已经达到饱和的时候,对于水滴说来却还没有达到饱和。这时云中的水汽向冰晶表面上凝华,而过冷却水滴却在蒸发,这时就产生了冰晶从过冷水滴&吸附&水汽的现象。在这种情况下,冰晶增长得很快。当它们增大到能够克服空气的阻力和浮力时,便落到地面,这就是雪花。雪花从云中下降到地面,路途很长,在条件适合时,可以经多次攀连并合而变得很大,形成鹅毛般的大雪片,就是经过多次并合而成的。一般而言,雪花既小又轻,它们的最大直径不超过2毫米,最大重量约为0.0002克。 下面我们来欣赏一下雪花的图片吧。如此的晶莹剔透、玉洁冰心,真是令人心醉!怪不得中国古代诗人穷尽了不下30种美誉来称呼它:六出,飞花,琼英,玉蝶,瑞叶,......。
的确,每一朵雪花都是大自然造物主的艺术创作。&&欢迎来到论文网!
论文网8200余万篇毕业论文、各种论文格式和论文范文以及9千多种期刊杂志的论文征稿及论文投稿信息,是论文写作、论文投稿和论文发表的论文参考网站,也是科研人员论文检测和发表论文的理想平台。。
您当前的位置:&>&&>&
摘要:为了研究超声波强化冰晶二次成核的机理,利用自行研制的超声波冷却实验台,分别研究了超声波对脱气蔗糖稀溶液与未脱气蔗糖稀溶液中树枝状冰晶体的影响。实验结果表明,未脱气溶液中的树枝状冰晶体受超声波辐射2秒后已发生分裂,而脱气溶液中的树枝状冰晶体受功率相同的超声波辐射6秒后却仍未分裂。表明超声场中冰晶发生分裂的主要原因是空化效应,而不是超声波在溶液中传播所引起的声压。
论文关键词:溶液,空化,冰,晶核生成,超声结晶
食品、药品等低温冷冻保存过程中,细胞内外液相水的结晶起着极其不利的影响。通常冰晶越粗大,冻结产品受到的冰晶损伤就越严重;冰晶越细小,冻结产品受到的冰晶损伤也就越轻,从而提高冻结质量。因此在产品冻结时控制冰晶粒径的大小是非常有意义的,超声波在该领域可以发挥非常重要的作用。
近来研究表明在水、溶液等多种液体结晶过程中应用低频高功率超声波既能够增加过冷液体的初级成核速率,又能够促使过冷液体中已形成的大冰晶分裂为许多小冰晶,破碎为分散的小冰晶又能够成为结晶过程的小晶核(二次晶核),从而使得冻结产品中冰晶粒径较小。但超声影响结晶的作用机理尚不清楚,尤其对超声波影响二次成核的研究就更少。目前存在以下两种推测试图来解释超声波对冰晶二次成核的影响。
(1)有些学者将超声波促进树枝状冰晶分裂的原因归结为超声波在过冷溶液中引起的周期性声压对冰晶产生的压缩作用。但该观点的提出仅是推测,未见有说服力的实验论证。
(2)RachelChow推测超声波诱发冰晶分裂的原因是由于高温的空化气泡对冰晶具有熔化作用。同时他也指出自己的实验无法确定超声波声压对冰晶的压缩作用是否有助于冰晶的破裂。
由上述可知,人们对超声波声压与空化效应在冰晶破裂过程中所起的作用还未达成一致认识。为了研究超声波对冰晶分裂的影响,本文将未脱气蔗糖稀溶液与脱气蔗糖稀溶液分别置于超声场中进行冻结实验,同时利用一套显微视频成像系统拍摄实验中二次冰晶核生成过程。并根据实验现象对超声波促进冰晶分裂的机理进行了讨论。
2材料及方法
2.1实验装置
自行设计的实验装置如图1所示,该装置主要由五部分组成。(1)超声波浴系统:由超声容器、超声振子及超声波发生器(上海声浦超声波设备厂)组成,其中6个超声振子均匀地粘结在超声容器的底部,超声波从底部向上传播到超声容器内的液体中,超声容器内尺寸:245&215&110mm³。超声发生器的频率值为25kHz,超声发生器的电功率在0~300W范围内可以调节。(2)样品容器:其为用夹子夹住的双层载玻片(载玻片长为76mm;宽为25mm;厚为1mm),双层载玻片之间紧夹着一中央开有长为30mm,宽为10mm矩形孔的薄塑料纸,结晶用的蔗糖稀溶液就被密闭在这矩形孔中。(3)冷却系统:将密闭有蔗糖稀溶液的双层载玻片水平地浸入超声容器里的冷冻液中(m:m=10:90),超声容器内冷冻液与制冷循环器(新芝DL-4030型,宁波新芝生物科技股份有限公司,其控温范围为:-40℃~25℃,恒温精度为&0.1℃)内冷冻液组成一个闭合循环回路,实验中降温所需的冷源由制冷循环器提供。(4)温度检测系统:由T型热电偶(铜-康铜)、ADAM-测温模块(中国台湾研华公司)和计算机组成。ADAM模块连接两个热电偶电极,一个电极被安置在超声容器内的冷冻液中监测冷冻液的温度;另一个电极贴在双层载玻片的下表面以获得密闭在双层载玻片间实验样品的温度,在预备实验中已证实置于载玻片上一薄层溶液的温度与载玻片下表面温度是非常接近的。(5)显微视频成像系统:由PJ-02金相显微镜及MV1.3H摄相机(上海巍途光电技术有限公司)组成。其中摄像机的帧速为30帧/秒,分辨率为640&480像素,显微镜头为4X物镜。通过该显微视频成像系统可以观察到冰晶在超声场中的破裂过程。
图1实验设备示意图
1&超声发生器;2&超声振子;3&超声容器;4,5&冷冻剂;6&制冷循环器;7&双层载玻片;8,9&热电偶电极;10&一组ADAM数据采集模块;11&金相显微镜;12&CCD相机;13&计算机;14&流量控制阀
2.2实验样品制备
相对于纯水而言,过冷蔗糖溶液中更易于生成稳定的树枝状冰晶体。又因本文讨论的是超声波对冰晶(而不是蔗糖晶体)分裂的影响,故实验中冻结材料是质量浓度为10%的蔗糖稀溶液。
脱气蔗糖溶液的制备:首先将60克精细纯白砂糖与1300克的纯水(二次蒸馏水)一起放入不锈钢盆中,然后用固定在台秤上的电炉加热上述蔗糖溶液至沸腾,并保持煮沸状态不少于三十分钟以便去除水中气体,待不锈钢盆中蔗糖溶液因水蒸发致使质量减为600克后停止加热,至此便制得了质量浓度为10%的脱气蔗糖溶液。然后尽快将上表面贴有薄塑料纸的载玻片水平浸入刚制得的脱气蔗糖溶液中,且薄塑料纸中心开有一矩形孔,紧接着将另一载玻片也水平浸入溶液中压在薄塑料纸上,并用夹子将两载玻片紧紧夹住,这样就能将脱气蔗糖溶液密封在两载玻片与薄塑料纸围成的中央矩形孔中。
未脱气蔗糖溶液的制备:取60克精细纯白砂糖溶入540克的纯水中制得质量浓度为10%的蔗糖溶液,然后按上述密封脱气蔗糖溶液的方法将未脱气蔗糖溶液也密封在两载玻片与薄塑料纸围成的中央矩形孔中。
2.3实验方法
为了研究不同超声效应对冰晶二次成核的影响,本文利用自制超声冻结实验台对如下两种条件下的冰晶成长过程进行了研究。&&&1&&&&
查看相关论文专题:
上一篇论文:
下一篇论文:
相关科技小论文
最新科技小论文
读者推荐的科技小论文
热门:&&&&您现在的位置:>>> 正文
冷冻干燥工艺优化—冻结研究
由于药品冷冻干燥过程会产生多种应力,对冻干药品的药性有很大的影响,因此对药品冷冻干燥过程进行合理设计,对于减少冻干损伤和提高冻干药品的质量有重大的意义。&冻结研究  冷冻干燥过程中的冻结过程非常重要,因为在冻结中形成的冰晶形态和大小以及玻璃化程度不仅影响后继的干燥速率,而且影响冻干药品的质量。因此在冻结过程中必须考虑配方、冻结速率、冻结方式、以及是否退火等问题。冻结方式  冻结方式不同,产生的冰晶的形态和大小就不同,而且会影响后继的干燥速率和冻干药品质量。根据冻结机理,可以把冻结分为全域过冷结晶和定向结晶两类。& & & & & & & & & & & & &GZLY-1 CIP SIP  全域过冷结晶是指全部药液处于相同或相近的过冷度下进行冻结的方式。在全域过冷结晶中,冻结速率和冰晶成核温度是重要的参数。  全域过冷结晶按冻结速率的快慢可分为慢速冻结和快速冻结。快速冻结的冰晶细小,而且没有冻结浓缩现象,但是存在不完全冻结现象。相反,慢速冷却产生较大的冰晶,并且存在冻结浓缩的现象。Thomas&W&Patapoff等人发现如果把药品直接浸入液氮或干冰-乙醇溶液槽中(快速冻结),那么晶核首先在瓶壁产生,然后冰晶向中心扩散,再垂直向上扩散。由于长成的冰晶细小,而且有水平方向的结构,导致干燥阶段的传质阻力很大,升华速率降低。实验证明,快速冻结导致升华速率低,解吸速率快,慢速冻结导致升华速率快,解吸速率慢。  James&A&Searles等人认为冰晶成核温度是全域过冷结晶的重要因素,因为它是升华速率的主要决定因素。他们在研究中发现,冰晶成核温度从本质上来说是随机的、不稳定的,不容易控制,但是受溶液中的微粒含量和是否存在冰晶成核体等影响因素。正是冰晶成核温度的随机性导致升华干燥速率的不均匀性以及与形态相关的参数,如冻干药品表面积和解吸干燥速率。& & & & & & & & & & & & & &GZLY-1 CIP SIP  定向结晶是指一小部分药液处于过冷状态下进行冻结的方式。Thomas&W&Patapoff介绍了一种垂直冻结方式。溶液用湿冰冷却,在瓶子底部用干冰冷却,形成晶核,然后放到-50℃的搁板上冻结。用这种方式冻结的样品的冰晶在垂直方向呈现烟囱状,在药品表面没有冻结浓缩层,而且整个药品的结构均一性很好,因此在干燥时的传质阻力很小,加快了冻干速率。Martin&Kramer等人采用了另外一种方式实现了定向冻结。他们在真空室压力为0.1kPa,搁板温度为+10℃的条件下,让溶液开始表面冻结,形成1~3mm左右的冰晶薄层。然后解除真空,降低搁板温度到结晶温度以下进行冻结。在这种条件下长成的冰晶粗大,也呈烟囱状。同时在干燥阶段发现,升华干燥时间比采用一般冻结的时间节省了20%。分析冻干药品时还发现,对甘露醇,采用这种方式冻结的冻干品的剩余含水量比采用一般冻结的要多;但对蔗糖和甘氨酸,两者差别不大。H&Schoof等人在冻干胶原质时也采用了定向结晶的方式。  冻结方式不同,产生的冰晶形态和大小就不同,后继的干燥速率也不同。实验证明,采用定向结晶方式的冻结药品的干燥速率比全域过冷结晶的快。但是无论采用哪种冻结方式,药品溶液必须部分或全部实现玻璃化冻结,以保护药品药性。&退火  退火是指把冻结药品温度升到共熔温度以下,保温一段时间,然后再降低温度到冻结温度的过程。在升华干燥之前增加退火步骤,至少有三个原因:& & & & & & & & & & & & & &GZLY-1 CIP SIP& 1、 强化结晶。在冻结过程特别是快速冻结过程中,配方中结晶成分往往来不及完全结晶。但是如果该成分能为冻干药品结构提供必要的支撑或者蛋白质在该成分完全结晶后会更稳定,那么就有必要完全结晶。此外,冻结浓缩液中也会有一部分水来不及析出,使其达不到最大浓缩状态。实验证明,当退火的温度高于配方的最大浓缩液玻璃化转变温度Tg'时,会促进再结晶的形成使结晶成分和未冻结水结晶完全。 2、 提高非晶相的最大浓缩液玻璃化转变温度Tg'。从非晶相中除去Tg'较低的结晶成分,能够提高非晶相的Tg'。Barry&J&Aldous在研究非晶态碳水化合物的水合物结晶规律时发现,经过退火之后的海藻糖干燥溶液的玻璃化转变温度由31℃上升到79℃,大大提高了稳定作用。 3、 改变冰晶形态和大小分布,提高干燥效率。James&A&Searles等人研究认为不同的成核温度产生不同的冰晶形态和粒径大小,继而导致升华干燥的速率的不均匀。但是一个过程中的干燥速率是由最慢的干燥药品确定的,因此不均匀的干燥速率会影响药品的质量和生产的经济性。研究证实退火过程中的相行为和重结晶可以减小由于成核温度差异造成的冰晶尺寸差异及干燥速率的不均匀性,提高干燥效率和药品均匀性。  为了达到退火目的,在退火操作中,必须考虑加热速率、退火温度、退火时间等参数。但是目前由于实验手段不够先进和理论知识比较缺乏,退火机理尚有疑问,退火参数的选取仍然没有依据。&& & & & & & & & & & & & GZLY-1 CIP SIP&&GZLY-1 CIP SIP水冷型真空冷冻干燥机,主要用于制药实验、小试,完全符合GMP认证要求,嵌入式设计、在位清洗、在位高压蒸汽灭菌,满足不同实验需要。声光报警、系统保护、PLC触摸+远程控制、PC浏览打印输出等特色功能,让您的产品安全更有保证。&&
关注本网官方微信 随时阅权威资讯
全年征稿 / 资讯合作
联系邮箱:
版权与免责声明
凡本网注明“来源:中国化工仪器网”的所有作品,版权均属于中国化工仪器网,转载请必须注明中国化工仪器网,,违反者本网将追究相关法律责任。
本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
日~30日,广州国际分析测试及实验室
2018 年3月16日,北京——安捷伦科技公司日前宣布荣获两项 2018 年度科学家选择奖,其中
近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测
据知情人士透露,中国第三方独立医学检验机构艾迪康正在准备将公司以大约5亿美元的价格

我要回帖

更多关于 空调扇冰晶需要加水吗 的文章

 

随机推荐