玩squany island的大神这天天爱消除43关怎么过过

苹果Squany Island下载 , 最新版Squany IslandiPad|iPhone手机版免费下载-PP助手官网
当前位置:
& 苹果版Squany Island下载
Squany Island软件截图Squany Island下载信息Squany Island简介
Find the missing golden ball to save Squany island. Be careful. You will have to strain your brain to solve logical puzzles and bring proper number of creatures to the finish point.Control three different types of Squanies:- chilled out guys in green hats - they are always happy (wonder why...) and ready to help others.- the orange monsters are the strongest fellows on the whole island. They may look a little bit stressed out, but it's because they want to bring everyone home- the violet guys - this whole affair is theirs fault, but they don't seem to be bothered at all! Explore 3 completely different worlds, face the obstacles and use special abilities of your monsters and rescue as many of them, as you can.Remember - cooperation is the key to success!Squany Island更新日志
miscellaneous bugs fixed热门应用
Squany Island相关资讯
Squany Island使用技巧
下载Squany Island的人还喜欢
游戏下载排行榜1
62 万下载2
14 万下载3
12 万下载4
10 万下载5
PP苹果助手:love25ppcom
扫一扫安装PP助手iOS版海南岛热带原始森林主要分布区土壤有机碳密度及影响因素
杨怀, 李意德, 任海, 骆土寿, 陈仁利, 刘文杰, 陈德祥, 许涵, 周璋, 林明献, 杨秋, 姚海荣, 周国逸 (2016). 海南岛热带原始森林主要分布区土壤有机碳密度及影响因素. 植物生态学报, 40, 292-303.
YANG Huai, LI Yi-De, REN Hai, LUO Tu-Shou, CHEN Ren-Li, LIU Wen-Jie, CHEN De-Xiang, XU Han, ZHOU Zhang, LIN Ming-Xian, YANG Qiu, YAO Hai-Rong, ZHOU Guo-Yi (2016). Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China. Chinese Journal of Plant Ecology,
40, 292-303.&&
Permissions
海南岛热带原始森林主要分布区土壤有机碳密度及影响因素
李意德1,*,
1中国林业科学研究院热带林业研究所, 海南尖峰岭森林生态系统国家野外科学观测研究站, 广州 510520
2中国林业科学研究院森林生态环境与保护研究所, 国家林业局森林生态环境重点实验室, 北京 100091
3中国科学院华南植物园, 广州 510650
4海南大学环境与植物保护学院, 海口 570228
*通信作者Author for correspondence (E-mail: )
基金: 中国科学院战略性先导科技专项(XDA)、国家自然科学基金()和中央级公益性科研院所基本科研业务费专项(RITFYWZX2012-02和CAFYBB)
以海南尖峰岭、霸王岭、五指山、吊罗山、鹦哥岭5个热带原始森林土壤为研究对象, 分层采集0-100 cm的土壤样品并分析有机碳含量, 用纵向拟合法和分层估算法分别估算其土壤有机碳密度。结果显示: (1)纵向拟合法计算的5个热带原始森林土壤有机碳密度分别为14.98、18.46、16.48、18.81、16.66 kg·m-2, 分层估算法分别为14.73、16.24、15.50、16.91、15.03 kg·m-2, 前者显著高于后者( p < 0.05); 未经扰动的原始森林土壤, 宜采用纵向拟合法计算土壤有机碳密度。(2) 5个热带原始森林0-30 cm表层土壤有机碳含量分别占0-100 cm的50.50%、48.56%、43.49%、47.37、42.88%。(3)土壤有机碳密度与森林群落Shannon-Wiener指数( p< 0.01)、Simpson指数( p< 0.05)、物种丰富度( p< 0.01)、土壤容重( p < 0.001)存在极显著或显著的负相关关系; 与海拔( p< 0.05)、土壤孔隙度( p< 0.001)、土壤全氮含量( p< 0.001)存在极显著或显著的正相关关系; 与坡向、林分生物量、平均胸径、平均树高无显著相关关系( p> 0.05)。(4)由于海南地处低纬度地区, 其丰富的降水和持续高温条件加速了有机质的分解和物质的再循环, 导致海南森林土壤碳密度远低于全国平均水平。
海南热带原始森林;
土壤纵向拟合方法;
土壤分层方法;
土壤有机碳密度
doi: 10.17521/cjpe.
Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China
YANG Huai1,2,
LI Yi-De1,*,
LUO Tu-Shou1,
CHEN Ren-Li1,
LIU Wen-Jie4,
CHEN De-Xiang1,
ZHOU Zhang1,
LIN Ming-Xian1,
YANG Qiu4,
YAO Hai-Rong4,
ZHOU Guo-Yi3
1Research Institute of Tropical Forestry, Chinese Academy of Forestry, Forest Ecosystem State Field Scientific Observation Station of Jianfenglin, Hainan, Guangzhou 510520, China
2Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
3South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
and4College of Environment and Plant Protection, Hainan University, Haikou 570228, China
Aims Estimating soil organic carbon (SOC) density and influence factors of tropical virgin forests in Hainan Island provide new insight in basic data for SOC pool estimation and its dynamics study.Methods The main distribution areas of tropical virgin forests in Jianfengling (JFL), Bawangling (BWL), Wu- zhishan (WZS), Diaoluoshan (DLS), Yinggeling (YGL) of Hainan Island were selected, and soil samples (0-100 cm) were sampled and analyzed. SOC density was estimated by soil vertical fitting method and soil stratification method to discover the distribution characteristics of soil organic carbon in tropical virgin forests of Hainan Island.Important findings Results showed that: (1) The average SOC density using soil vertical fitting method in JFL, BWL, WZS, DLS and YGL was 14.98, 18.46, 16.48, 18.81, 16.66 kg·m-2, respectively, which was significantly higher ( p < 0.05) than the estimated average SOC density using soil stratification method in these areas (14.73, 16.24, 15.50, 16.91, 15.03 kg·m-2, respectively). It is better to use soil vertical fitting method for SOC density estimation when the soil was natural without disturbance. (2) The proportion of SOC content in the first 0-30 cm depth interval out of SOC in the whole 0-100 cm soil profiles in JFL, BWL, WZS, DLS and YGL was 50.50%, 48.56%, 43.49%, 47.37%, 42.88%, respectively. (3) SOC density was significantly negative correlated with Shannon-Wiener index, Simpson index, species richness, a and was significantly positive correlated with altitude, soil porosity, and soil nitrogen. However, SOC density was not significantly correlated to slope, biomass, average diameter at breast height, or average height. (4) Our study area Hainan was located in low latitude area with high rainfall and high temperature, which accelerated the decomposition of organic matter and nutrient recycling, resulting in significantly lower SOC densities in this tropical virgin forests of Hainan Island than the average value in China.
Key words:
Hainan tropical virgin forests;
soil vertical fitting method;
soil stratification method;
soil organic carbon density
森林生态系统作为陆地生态系统主体, 其面积仅占全球非冰表面的40% (), 但维持着陆地生态系统植被碳库的82%-86%和土壤碳库的70%-73% (; ), 总碳量高达638 Gt (1 Gt = 1 × 109 t) (), 每年固定的碳约占整个陆地生态系统的2/3 ()。森林土壤有机碳储量的变化影响着陆地生态系统碳收支平衡, 是导致大气碳库与全球气候变化主要的因素()。土壤碳库0.1%的变化将导致大气圈CO2浓度发生百万分之一的变化, 全球土壤有机碳10%的变化, 相当于人类活动30年排放的CO2量()。土壤有机碳作为一种稳定而长效的碳源物质, 其分布与动态变化是学者关注的热点问题()。近年来, 我国在森林土壤有机碳密度的研究有增加趋势(), 但大都基于收集的资料, 在精度上有待提高。因此, 要 更精准地评价土壤碳库, 须通过大量样地调查来实现。海南热带森林占全国热带森林面积的31.4%, 是受全球气候变化影响的敏感区域, 在生态环境建设中起举足轻重的作用()。一些学者对海南热带土壤碳密度进行了研究, 如王海燕等(2009)、谭丽霞等(2012)、李福燕等(2008)、陈小花等(2014)、曹启民等(2012)、张莉(2013), 但较少涉及原始森林土壤碳密度。本文以海南主要热带原始森林土壤为研究对象, 采用土壤纵向拟合法和土壤分层法分别计算土壤碳密度, 阐明其与地形、植被、土壤理化性质的关系, 为进一步精确估算海南岛热带原始林土壤碳库提供科学依据。1 研究方法1.1 研究地概况研究地在海南岛热带原始森林主要分布区尖峰岭(JFL)、霸王岭(BWL)、五指山(WZS)、吊罗山(DLS)和鹦哥岭(YGL)。海南属低纬度热带岛屿季风气候, 雨热同期, 降水丰富, 干湿两季明显, 11月-翌年4月为旱季, 5-10月为雨季; 成土母岩主要是花岗岩、砂页岩和闪长岩等, 土壤主要为砖黄壤和砖红壤。各研究点基本情况见 (; ; ; ; ; ; ; ; ; ; )。表1Table 1表1(Table 1)
表1 海南5个主要热带原始林区基本情况表
Table 1 Basic conditions of the five tropical virgin forests in Hainan研究点Location经度Longitude (E)纬度Latitude (N)年平均气温Mean annualtemperature (℃)平均年降水量Mean annualprecipitation (mm)海拔范围Elevation range (m)主要森林类型Main forest type主要土壤类型Main soil type尖峰岭Jianfengling108.60° -109.08° 18.38° -18.83° 25-201 700-2 600600-1 400低地雨林、山地雨林Lowland rainforest, Montane rainforest砖红壤、砖黄壤Latosol, lateritic yellow soil霸王岭Bawangling108.97° -109.88° 18.88° -19.33° 25-201 500-2 300600-1 500低地雨林、山地雨林Lowland rainforest, Montane rainforest砖红壤、砖黄壤Latosol, lateritic yellow soil五指山Wuzhishan109.65&#x002 -109.78&#x002 18.82&#x002 -18.97&#x002 24-192 300-2 500800-1 800山地雨林、山地常绿阔叶林Montane rainforest, montane broadleaved evergreen forest砖黄壤、黄壤lateritic yellow soil, yellow soil吊罗山Diaoluoshan109.75° -110.05° 18.67° -18.97° 25-201 870-2 760500-1 450低地雨林、山地雨林Lowland rainforest, Montane rainforest砖红壤、砖黄壤Latosol, lateritic yellow soil鹦哥岭Yinggeling109.18° -109.57° 18.82° -19.13° 24-201 800-2 700600-1 800山地雨林、山地常绿阔叶林Montane rainforest, montane broadleaved evergreen forest砖红壤、砖黄壤、黄壤Latosol, lateritic yellow soil, yellow soil
表1 海南5个主要热带原始林区基本情况表
Table 1 Basic conditions of the five tropical virgin forests in Hainan1.2 样地设置、土壤采集及分析方法在5个区域内各设置1200 m2 (30 m × 40 m)的典型样地30个, 记录其海拔、坡度、坡向等环境参数; 调查其树种组成、胸径(DBH)、树高等群落学参数, 并计算Shannon-Weinner指数和物种丰富度。样地内使用内径为3 cm的土钻随机选取4-6个点, 按0-10 cm、10-20 cm、20-30 cm、30-50 cm、50-100 cm等5个层次分别取样, 对应层次的样品进行混合。混合土样被带回实验室按四分法缩分再风干, 过2 mm筛后装瓶备测。土壤有机碳用重铬酸钾加热法, 土壤全氮用半微量开氏法, 土壤全磷用HClO4- H2SO4法测定(; )。在样地周边挖取代表性的一个土壤剖面(深100 cm), 用土壤环刀(100 cm3)按上述土壤层次每层取2个环刀样品, 在105 ℃烘干至恒质量后称量, 并计算土壤容重。群落Shannon-Wiener指数的计算: 式中S表示总物种数, pi表示第i个种占总数的比例()。土壤容重的计算:土壤容重(g· cm-3) = M/V (2)式中M表示环刀内干土质量(g); V表示环刀体积(cm3)。1.3 土壤碳密度计算方法土壤有机碳密度(SOCdensity)是指单位面积单位深度土体中土壤有机碳质量, 国际上通常以深度1 m、面积1 m2, 即1 m3的土壤有机碳质量为参照标准, 单位为kg C· m-2。1.3.1 纵向拟合法纵向拟合方法是通过对土壤各层进行拟合得到土壤有机碳随深度变化的近似函数, 然后利用此函数计算平均土壤有机碳, 结合土壤质地、厚度、容重等来计算土壤有机碳密度。公式如下:SOCdensity= C × θ
× D × (1 - δ ) / 100 (3)式中, C为平均土壤有机碳含量(g· kg-1), D为土层厚度(cm), θ 为土壤容重(g· cm-3), δ 为直径> 2 mm的砾石含量(体积百分数)。土壤不同层次的有机碳含量、质地、容重等土壤理化性质也不同, 在数据允许的情况下, 应该分别计算, 但小区域范围内, 可以忽略砾石(粒径> 2 mm)含量之间的差异()。根据研究区土壤质地()及土壤石质度级别与δ 的关系(), 取δ 值为0.5%。1.3.2 分层估算法土壤分层方法是将不同深度的土壤有机碳、容重进行加和, 然后再平均。根据土壤分层数据()计算土壤有机碳密度, 公式如下: 式中i为土层数, C、N、D、θ 、δ 的物理意义与公式3相同。表2Table 2表2(Table 2)
表2 利用纵向拟合方法计算的海南各地区土壤有机碳含量、土壤容重和土壤有机碳密度
Table 2 The soil organic carbon (SOC) content, SOC density and soil bulk density measured by the vertical fitting method in Hainan地点Location土壤有机碳含量SOC content(g· kg-1)土壤容重Soil bulk density(g· cm-3)土壤有机碳密度SOC density(g· kg-1)尖峰岭Jianfengling11.321.3314.98霸王岭Bawangling14.841.2518.46五指山Wuzhishan13.581.2216.48吊罗山Diaoluoshan13.601.3918.81鹦哥岭Yinggeling16.261.0316.66
表2 利用纵向拟合方法计算的海南各地区土壤有机碳含量、土壤容重和土壤有机碳密度
Table 2 The soil organic carbon (SOC) content, SOC density and soil bulk density measured by the vertical fitting method in Hainan2 结果和分析2.1 纵向拟合法计算土壤有机碳密度利用土壤有机碳、土壤容重等数据拟合其随土壤深度变化情况。首先将各研究点的30个样点的土壤有机碳、土壤容重做出散点图, 然后利用线性函数、对数函数、幂函数、指数函数、二次多项式等多个函数进行拟合, 找出最佳的拟合曲线(和 )。图1Fig. 1 图1 海南岛热带原始森林土壤有机碳含量与剖面深度拟合曲线。A, 尖峰岭。B, 霸王岭。C, 五指山。D, 吊罗山。E, 鹦哥岭。Fig. 1 Changes of soil organic carbon content with soil depth in tropical virgin forests of Hainan Island. A, Jianfengling. B, Bawangling. C, Wuzhishan. D, Diaoluoshan. E, Yinggeling.图2Fig. 2 图2 海南岛热带原始森林土壤容重与剖面深度的拟合曲线。A, 尖峰岭。B, 霸王岭。C, 五指山。D, 吊罗山。E, 鹦哥岭。Fig. 2 Changes of soil bulk density with soil depth in tropical virgin forests of Hainan Island. A, Jianfengling. B, Bawangling. C, Wuzhishan. D, Diaoluoshan. E, Yinggeling.根据拟合曲线和积分中值定理, 可得到5个地区的土壤有机碳密度、容重(), 其土壤容重的范围是1.03-1.39 g· cm-3, 与全国平均容重1.30 g· cm-3接近①(① 郭沂林, 潘剑君 (2012). 寒温带与中亚热带森林土壤有机碳密度对比研究. 面向未来的土壤科学(上册)— — 中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集.)。2.2 分层估算法计算土壤有机碳密度对5个地区各层土壤有机碳、容重进行计算(), 其土壤表层有机碳(0-10 cm)显著高于其他土壤层次, 具有表聚性。表3Table 3表3(Table 3)
表3 各土壤层次的土壤有机碳含量(SOC, g· kg-1)和土壤容重(SBD,
g· cm-3)的统计结果(平均值± 标准误差)
Table 3 Soil organic carbon content (SOC, g· kg-1) and soil bulk density (SBD,
g· cm-3) of all soil layers (mean ± SE)土层Soil layer (cm)指标index尖峰岭Jianfengling (n = 30)霸王岭Bawangling (n = 30)五指山Wuzhishan (n = 30)吊罗山Diaoluoshan (n = 30)莺歌岭Yinggeling (n = 30)0-10SOC30.35 ± 1.57ABa34.71 ± 2.78Aa25.29 ± 1.27Ba30.95 ± 1.68Aa32.11 ± 2.13AaSBD1.11 ± 0.03Aa0.99 ± 0.03Ba0.99 ± 0.03Ba1.16 ± 0.04Aa0.90 ± 0.04Ba10-20SOC19.54 ± 1.23Ab23.08 ± 1.41Ab20.88 ± 1.5Ab20.21 ± 1.16Ab20.79 ± 1.03AbSBD1.24 ± 0.02ACb1.1 ± 0.03Bb1.16 ± 0.03ABb1.27 ± 0.03Cb1.00 ± 0.04Dab20-30SOC12.72 ± 0.68Ac16.37 ± 1.11ABc15.66 ± 1.09ABc14.08 ± 0.68Ac14.88 ± 0.83AcSBD1.32 ± 0.03Abc1.22 ± 0.03Bc1.23 ± 0.02Bbc1.35 ± 0.04Ab1.02 ± 0.03Cb30-50SOC9.73 ± 0.83Ad12.42 ± 0.97Bc12.05 ± 0.67Bd10.41 ± 0.67ABd12.35 ± 0.89BcSBD1.37 ± 0.03Ac1.27 ± 0.02Bcd1.26 ± 0.03Bc1.44 ± 0.02Ac1.06 ± 0.04Cb50-100SOC6.72 ± 0.61Ae7.87 ± 0.44ABd9.25 ± 0.50Bd8.22 ± 0.51ABd11.45 ± 1.28CcSBD1.39 ± 0.03Ac1.32 ± 0.02Ad1.23 ± 0.02Bbc1.45 ± 0.03ACc1.05 ± 0.03Db0-100SOCdensity14.7316.2415.5016.9115.03Different capital letters showed significant difference among different areas (p= 0.05); Different lowercase letters showed significant difference among different soil layers (p= 0.05). SOCdensity, soil organic carbon density.不同大写字母表示各地区间的差异显著(p= 0.05), 不同小写字母表示不同土壤层次间的差异显著(p= 0.05)。SOCdensity, 土壤有机碳密度。
表3 各土壤层次的土壤有机碳含量(SOC, g· kg-1)和土壤容重(SBD,
g· cm-3)的统计结果(平均值± 标准误差)
Table 3 Soil organic carbon content (SOC, g· kg-1) and soil bulk density (SBD,
g· cm-3) of all soil layers (mean ± SE)2.3 植被、地形和土壤主要性质与土壤碳密度的相关性采用Pearson相关分析法, 分析5个研究区的植被因子(物种丰富度、Simpson指数、Shannon-Wiener指数、Pielou均匀度指数、林分生物量、林分郁闭度、林木平均高度、林木平均胸径和单位面积植株个体数)、地形因子(坡度、海拔、坡向)和土壤理化性质因子(土壤总孔隙度、土壤容重、土壤全氮、土壤全磷)与土壤有机碳密度的关系, 表明Shannon- Wiener指数(r = -0.251, p < 0.01)、Simpson指数(r = -0.182, p < 0.05)、物种丰富度(r= -0.228, p < 0.01)、土壤容重(r= -0.485, p < 0.001)与土壤有机碳密度存在极显著或显著的负相关关系; 海拔(r= 0.178, p < 0.05)、土壤孔隙度(r= 0.485, p < 0.001)、土壤全氮(r= 0.317, p< 0.001)与土壤有机碳密度存在极显著或显著的正相关关系。经单因素方差分析, 表明坡向对土壤有机碳密度无显著影响(F = 0.620, p > 0.05)。PCA非约束排序分析(, ; )表明, 前两轴解释总方差的比例是54.9%。从1型标尺双序图看, 物种丰富度, Shannon-Wiener指数, Simpson指数, Pielou均匀度指数, 生物量, 林木平均高度, 林木平均胸径, 郁闭度对排序空间的贡献大于所有变量的平均贡献。从2型标尺双序图看, 土壤有机碳密度、土壤总孔隙度、土壤全磷, 坡度、郁闭度, 土壤全氮, 单位面积植株个体数, 土壤容重, 物种丰富度对样方沿着第一轴分布起关键作用; 土壤有机碳密度与土壤总孔隙度、海拔、土壤全磷、坡度具有正相关关系, 与土壤容重、物种丰富度、Shannon- Wiener指数、Simpson指数具有负相关关系。表4Table 4表4(Table 4)
表4 植被、地形和土壤主要性质第1、2、3、4主成分特征值、贡献率、累积率
Table 4 Eigenvalue, contributive and accumulative rates of principal component 1, 2, 3 and 4 in the vegetation, topography and soil properties主成分Component特征值Eigenvalue贡献率Contributive rate(%)累计贡献率Accumulative rate (%)15.436 17133.9833.9823.352 78120.9554.9331.918 00711.9966.9241.024 2516.40273.32
表4 植被、地形和土壤主要性质第1、2、3、4主成分特征值、贡献率、累积率
Table 4 Eigenvalue, contributive and accumulative rates of principal component 1, 2, 3 and 4 in the vegetation, topography and soil properties表5Table 5表5(Table 5)
表5 植被、地形和土壤主要性质中第1、2、3、4主成分元素负荷量
Table 5 Element loading of principal component 1, 2, 3 and 4 in the vegetation, topography and soil properties指标 IndexPC1PC2PC3PC4物种丰富度Species richness-0.361 22-0.126 59-0.193 710.173 50Simpson指数Simpson index-0.245 99-0.385 24-0.159 24-0.012 57Shannon-Wiener指数Shannon-Wiener index-0.310 91-0.338 54-0.149 160.025 99Pielou均匀度指数Pielou evenness index-0.130 10-0.438 93-0.163 01-0.134 68林分生物量Forest biomass0.174 37-0.375 81-0.076 670.092 61林分郁闭度Forest canopy density0.328 61-0.172 540.193 56-0.102 91林木平均树高Trees average height0.227 40-0.357 660.171 44-0.072 60林木平均胸径Trees average DBH0.307 09-0.324 360.066 92-0.100 56单位面积植株个体数Plant individual numbers per unit area-0.313 950.161 62-0.265 970.280 35坡度Slope0.081 52-0.066 99-0.227 180.199 30海拔Elevation0.190 56-0.222 59-0.276 190.372 46土壤总孔隙度The soil total porosity0.309 970.118 85-0.361 860.077 20土壤容重Soil bulk density-0.309 97-0.118 850.361 86-0.077 20土壤有机碳Soil organic carbon0.143 540.112 50-0.458 22-0.363 67土壤全氮Soil total nitrogen-0.035 580.034 16-0.363 48-0.579 54土壤全磷Soil total phosphorus0.235 480.043 86-0.092 070.423 42DBH, diameter of breast height.
表5 植被、地形和土壤主要性质中第1、2、3、4主成分元素负荷量
Table 5 Element loading of principal component 1, 2, 3 and 4 in the vegetation, topography and soil properties图3Fig. 3 图3 海南岛热带原始森林植被、地形、土壤主要性质PCA双序图。AL,
生物量; C,
土壤有机碳密度; CD,
郁闭度; DBH,
林木平均胸径; GR,
林木平均高度; J,
Pielou均匀度指数; N,
土壤全氮; P,
土壤全磷; S,
物种丰富度; SBD,
土壤容重; SI,
Simpson指数; SP,
土壤总孔隙度; SW,
Shannon-Wiener指数; TD,
单位面积植株个数。Fig. 3 The double sequence diagrams of principal component analysis in vegetation, topography, soil properties in tropical virgin forests of Hainan Island. AL,
soil or CD,
average tree diame GR,
Shannon-W TD,
tree numbers in unit area.3 讨论和结论3.1 土壤有机碳含量及碳密度纵向拟合法计算的5个研究区土壤有机碳含量分别为11.32、14.84、13.58、13.60、16.26 g· kg-1, 土壤有机碳密度分别为15.21、18.60、16.08、18.81、16.66 kg· m-2。分层法计算的土壤有机碳密度分别为14.96、16.47、15.64、16.91、15.03 kg· m-2。两种方法计算的森林土壤有机碳与海南白沙县原始森林土壤有机质A层为(41.8 ± 7.6) g· kg-1, B层为(13.4 ± 4.2) g· kg-1 (), 霸王岭热带低地雨林原始森林0-20 cm土壤有机质为31.869 g· kg-1 (), 尖峰岭热带山地雨林原始森林0-10、10-30、30-60 cm土壤有机质分别为(57.31 ± 15.46)、(24.90 ± 7.06)、(13.10 ± 4.36) g· kg-1 ()相一致, 均高于海南岛土壤有机碳密度的算术平均值9.48 kg· m-2 ()、广东鼎湖山自然保护区7.39 kg· m-2 ()、中国土壤平均碳密度9.60 kg· m-2()和10.53 kg· m-2()和全球土壤有机碳密度平均水平10.6 kg· m-2 (), 但小于东北地区平均土壤碳密度21.27 kg· m-2 ()。但这些结果包括农地、林地、草地的总和, 不能反映森林土壤碳贮存的情况。因此, 专从森林角度来看, 海南5个地区原始林土壤有机碳密度小于中国森林土壤平均碳密度19.35 kg· m-2 (), 及方精云等(1996) (20.13 kg· m-2)、周玉荣等(2000) (19.36 kg· m-2)估算的全国森林土壤有机碳密度的平均值, 但高于广西(12.13 kg· m-2) ()、美国大陆(10.8 kg· m-2)和澳大利亚(8.3 kg· m-2)的森林土壤有机碳密度()。海南岛森林土壤碳密度低于全国平均水平, 主要原因是海南岛地处低纬度地区, 丰富的降水和持续高温条件加速有机质的分解和物质的再循环, 不利于土壤有机碳的积累。但远远高于广西、美国和澳大利亚地区, 说明海南岛热带森林土壤有明显的固持有机碳能力, 在全球碳循环中是一个较大的碳汇。同时也高于鼎湖山近一倍, 其原因是鼎湖山土层较薄(平均为51.99 cm), 降雨量也较海南岛分配均匀, 全年高温高湿, 不利于有机碳的积累, 且人为收割林下层植物和凋落物造成土壤碳损失()。早在年吴仲民(1997)的研究表明尖峰岭主要热带森林土壤有机碳储量为97.10-119.54 t· hm-2, 加权平均值为102.60 t· hm-2, 本文试验结果为152.0 t· hm-2, 这与Zhou等(2006)研究发现的原始成龄林土壤碳库有累积现象是一致的。3.2 土壤有机碳密度在土层中的垂直变化5个研究区0-30 cm的土壤有机碳含量变化较大, 而30-100 cm土层变化较少, 其中0-30 cm土壤有机碳含量分别占0-100 cm土层的50.50%、48.56%、43.49%、47.37、42.88%。张晓琳等(2014)的研究0-30 cm土层的有机碳贡献率是46.77%。Baties (1996)的研究0-30 cm土壤碳贮量在全球各类型土壤中的平均贡献率为49%。赵广帅等(2014)的研究0-40 cm土层土壤有机碳在黄河下游引黄灌区的贡献率是43.5%。李英升等(2014)的研究0-30 cm土层土壤有机碳密度在江西省4种森林类型的贡献率为50%左右。潘鹏等(2014)的研究0-30 cm土壤有机碳密度在江西中部马尾松(Pinus massoniana)天然林不同龄组的贡献率在41.3%-52.4%之间。Liu等(2012)的研究中0-20 cm土壤平均有机碳密度在青藏高原东北部7个植被类型的贡献率为43%。本文结果与上述一致。上层土壤有机碳密度明显高于下层, 主要因为土壤有机碳来源于地上的凋落物和地下的根系。凋落物集中在地表, 其分解产物向浅层土壤转移; 同时地下的根系也集中在浅层土壤。故浅层土壤有机碳密度的贡献率较高。3.3 土壤有机碳密度的影响因素海南岛热带原始林区土壤有机碳密度与Shannon- Wiener指数、Simpson指数、物种丰富度呈负相关关系。Roem等(2002)的研究表明物种多样性与土壤养分呈负相关关系。DiTommaso和Aarssen (1989)研究表明草本物种丰富度随土壤养分增加而降低。王长庭(2010)研究认为不同类型草地群落其多样性指数随土壤有机碳增加而降低。崔鸿侠等(2012)研究表明灌木层和草本层物种多样性与土壤碳储量显著负相关。肖德荣等(2008)研究认为Shannon-Wiener指数、Simpson指数与土壤有机质含量负相关。李林等(2006)研究表明灌木层的Shannon指数与土壤有机质显著负相关。在海南岛热带原始森林里, 物种数增多其根系分泌物及凋落物质量多样化, 这导致微生物数量和活性升高及土壤酶活性增强, 加速土壤有机物质的分解及养分元素的释放, 使得土壤有机碳密度随多样性增加减少。另外, 当土壤中养分丰富时, 一些物种对丰富的养分能很快地吸收和利用, 并且将形成占优势的区域而排除其他物种进入()。Xu等(2015)对尖峰岭热带雨林的研究表明稀有种往往分布在生物多样性较低的贫磷地方, 且本文研究结果为生物多样性与土壤有机碳密度负相关, 故稀有种分布的地方土壤有机碳密度可能较高, 因此, 这更加支持了划分自然保护区应包含生物多样性低的地方。本研究表明土壤有机碳密度与土壤容重负相关。在高寒草地()、高寒牧区(土壤活性有机碳) ()、云南热区4种林分()、密云水库上游流域()等地土壤有机碳密度与土壤容重负相关关系。在影响土壤有机碳密度各因子中, 土壤容重的独立解释能力最强(42.0%), 土壤容重增加, 提高了土壤紧实度, 孔隙减少, 不利于有机碳矿化和分解()。土壤有机碳含量随海拔上升而递增。在老哈河流域()、密云水库上游流域()、粤北亚热带山地森林()、庐山()、祁连山北坡垂直带山地森林()和其他地方(; ; )的研究土壤有机碳随海拔上升也递增。海拔升高导致气温降低, 蒸发量减少, 动植物残体分解缓慢且大部分沉积在土壤中, 使土壤有机碳的释放降低()。低海拔由于温度较高导致土壤有机碳分解加快, 促进了有机碳的释放()。森林碳汇是当今应对全球气候变暖的积极措施, 也是林业对社会经济可持续发展做出贡献的途径和平台。海南是林业大省, 开展森林碳汇研究具有生态区位的重要优势, 通过精准测算和实地研究表明海南热带原始土壤有机碳密度较大, 有明显的蓄积能力, 是一个较大的碳汇。
致谢 感谢尖峰岭森林生态系统国家野外科学观测研究站工作人员, 霸王岭林业局杨秀森、洪小江及相关人员, 五指山林业局韩志勇、张剑峰及相关人员在野外调查、采样工作中给予的帮助。
The authors have declared that no competing interests exist.
作者声明没有竞争性利益冲突.
An SQ, Zhu XL, Wang ZF, Li GQ, Chen XL (1999).
The plant species diversity in a tropical montane rain forest on Wuzhi Mountain, Hainan. , 19, 803-809. (in Chinese with English abstract)[安树青, 朱学雷, 王峥峰, 李国旗, 陈兴龙 (1999).
海南五指山热带山地雨林植物物种多样性研究. , 19, 803-809. ]
[本文引用:1]
Batjes NH (1996).
Total carbon and
nitrogen in the soils of the world. , 47, 151-163.
[本文引用:1]
Cai HD, Zhang W, Jiang JF, Nong SJ, Fang YK, Xiong XF (2014).
Estimation and
distribution patterns of organic carbon stock in forest soil in Guangxi. Journal of Nanjing Forestry University (Natural Sciences Edition), 38(6), 1-5. (in Chinese with English abstract)[蔡会德, 张伟, 江锦烽, 农胜奇, 方颖琨, 熊晓斐 (2014).
广西森林土壤有机碳储量估算及空间格局特征. 南京林业大学学报(自然科学版), 38(6), 1-5. ]
[本文引用:1]
Cao QM, Wu PF, Zhao CM, Qin JW, Jiang JS (2012).
Latitude distribution of soil organic matter and
its influence of climate factors in rubber planting areas in Hainan Island
. Guangdong Agricultural Sciences, 39(7), 85-87. (in Chinese with English abstract)[曹启民, 吴鹏飞, 赵春梅, 覃姜薇, 蒋菊生 (2012).
海南植胶区土壤有机质纬度分布特征及其气候影响因素. 广东农业科学, 39(7), 85-87. ]
[本文引用:1]
Chen W, Meng M, Qiu Q, Feng X, Yang B, Xu YM (2013).
Comparison of soil organic carbon of four forests in tropical Yunnan. Journal of West China Forestry Science, 42(3), 79-85. (in Chinese with English abstract)[陈伟, 孟梦, 李江, 邱琼, 冯弦, 杨斌, 徐玉梅, 2013.
云南热区4种林分土壤有机碳的比较研究. 西部林业科学, 42(3), 79-85. ]
[本文引用:1]
Chen XH, Yu XB, Xue Y, Wang XY, Cui XB, Ding X (2014).
Litter and
soil soluble organic carbon feature of three vegetation types in Wenchang, Hainan Island
. Chinese Journal of Tropical Crops, 35, 2043-2049. (in Chinese with English abstract)[陈小花, 余雪标, 薛杨, 王小燕, 崔喜博, 丁熙 (2014).
海南文昌3种森林类型凋落物及土壤有机碳现状分析. 热带作物学报, 35, 2043-2049. ]
[本文引用:1]
Cui HX, Xiao WF, Pan L, Huang ZL, Pang HD (2012).
Characteristics of soil carbon storage of Abies fargesii forest in Shennongjia. , 48(11), 107-111. (in Chinese with English abstract)[崔鸿侠, 肖文发, 潘磊, 黄志霖, 王晓荣, 庞宏东 (2012).
神农架巴山冷杉林土壤碳储量特征. , 48(11), 107-111. ]
[本文引用:1]
DiTommaso A, Aarssen L (1989).
Resource manipulations in natural vegetation: A review. , 84, 9-29.
[本文引用:1]
Dixon RK, Solomon A, Brown S, Houghton R, Trexier M, Wisniewski J (1994).
Carbon pools and
flux of global forest ecosystems. , 263, 185-190.
[本文引用:1]
Du HP (2007).
Correlations Between Soil Organic Carbon Fractions with Variable Links to Soil Physical in an Alpine Pastureland
. Master degree dissertation,
Gansu Agricultural University, Lanzhou. 1-11. (in Chinese with English abstract)[杜慧平 (2007).
高寒草地土壤有机碳组分之间及有机碳组分与土壤物理性质之间的相关性. 硕士论文, 甘肃农业大学, 兰州. 1-11. ]
[本文引用:1]
Du YX, Wu CJ, Zhou SX, Huang L, Han SM, Xu XF, Ding Y (2011).
Forest soil organic carbon density and
its distribution characteristics along an altitudinal gradient in Lushan Mountains of China. , 22, 1675-1681. (in Chinese with English abstract)[杜有新, 吴从建, 周赛霞, 黄良, 韩世明, 徐雪峰, 丁园 (2011).
庐山不同海拔森林土壤有机碳密度及分布特征. , 22, 1675-1681. ]
[本文引用:2]
Fang JY, Chen AP (2001).
Dynamic forest biomass carbon pools in China and
their significance. Acta Botanica Sinica, 43, 967-973.
[本文引用:1]
Fang JY, Liu GH, Xu SL, Wang GC, Wen YP (1996). Carbon Storage of Terrestrial Ecosystems in China. China Environment Science Press, Beijing. 128, 391-397. (in Chinese)[方精云, 刘国华, 徐嵩龄, 王庚辰, 温玉璞 (1996). 中国陆地生态系统的碳库. 中国环境科学出版社, 北京. 128, 391-397. ]
[本文引用:1]
Fang YT, Mo JM, Browns S, Zhou GY, Zhang QM, Li DJ (2004).
Storage and
distribution of soil organic carbon in Dinghushan Biosphere Reserve. , 24, 135-142. (in Chinese with English abstract)[方运霆, 莫江明, Brown S, 周国逸, 张倩媚, 李德军 (2004).
鼎湖山自然保护区土壤有机碳贮量和分配特征. , 24, 135-142. ]
[本文引用:2]
FAO (20102010. Cited: .
[本文引用:1]
Fu W, Zhao K, Zhang C, Tunney H (2011).
Using Moran’s I and
geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. , 174, 785-798.
[本文引用:1]
Geng GP, Gao Peng, Lv SQ, Zhang J (2011).
Spatial distribution of soil organic matter and
total nitrogen in Matiyu small watershed in hilly area of middle southern Shand
ong Province. , 9(6), 99-105. (in Chinese with English abstract)[耿广坡, 高鹏, 吕圣桥, 张杰 (2011).
鲁中南山区马蹄峪小流域土壤有机质和全氮空间分布特征. , 9(6), 99-105. ]
[本文引用:1]
Gough L, Osenberg CW, Gross KL, Collins SL (2000).
Fertilization effects on species density and
primary productivity in herbaceous plant communities. , 89, 428-439.
[本文引用:1]
Guo YF, Yao YF, Qin FC, QI W, Wang X, Chang WD (2014).
Impact of terrain factors on soil organic carbon in Laoha river basin. Journal of Arid Land
Resources and
Environment, 28(2), 156-161. (in Chinese with English abstract)[郭月峰, 姚云峰, 秦富仓, 祁伟, 王欣, 常伟东 (2014).
地形因子对老哈河流域土壤有机碳的影响. 干旱区资源与环境, 28(2), 156-161. ]
[本文引用:1]
Hao QY, Liu Q, Wang SQ, Zhong QX, Wang YC, Ruan CL, Yan TL, Du S, Huang YC (2013).
Biomass of forest communities at different altitude regions in Yinggeling montane tropical rainforest, Hainan Island
. , 21, 529-537. (in Chinese with English abstract)[郝清玉, 刘强, 王士泉, 钟琼芯, 王亚陈, 阮长林, 严廷良, 杜爽, 黄奕财 (2013).
鹦哥岭山地雨林不同海拔区森林群落的生物量研究. , 21, 529-537. ]
[本文引用:1]
Hu QW, Ouyang H, Liu XD (2006).
Distribution characteristics of soil organic carbon and
total nitrogen along the altitudinal belt in the northern slope of Qilian Mountains. Journal of Mountain Science, 24, 654-661. (in Chinese with English abstract)[胡启武, 欧阳华, 刘贤德, 2006.
祁连山北坡垂直带土壤碳氮分布特征. 山地学报, 24, 654-661. ]
[本文引用:1]
Huang CM, Gong ZT (2000).
Study on pedogenesis and
development of mountain soils in Jianfengling mountain area. Journal of Mountain Science, 18(3), 193-200. (in Chinese with English abstract)[黄成敏, 龚子同 (2000).
海南岛尖峰岭地区山地土壤发生特性. 山地学报, 18(3), 193-200. ]
[本文引用:1]
Huang YF, Ding Y, Zang RG, Li XC, Zhou ZC, Han WT (2012).
Spatial pattern of trees in tropical lowland
rain forest in Bawangling of Hainan Island
, China. , 36, 269-280. (in Chinese with English abstract)[黄运峰, 丁易, 臧润国, 李小成, 邹正冲, 韩文涛 (2012).
海南岛霸王岭热带低地雨林树木的空间格局. , 36, 269-280. ]
[本文引用:1]
Huang YT (2013).
Comparison of Soil Properties under Different Succession Series of Tropical Lowland
Rain Forest in Bawangling, Hainan Island
. Master degree dissertation,
Southwest University, Chongqing. 12-35. (in Chinese with English abstract)[黄永涛 (2013).
海南霸王岭热带低地雨林不同演替阶段土壤理化性质比较. 硕士论文, 西南大学, 重庆. 12-35. ]
[本文引用:1]
Jiang HS (2006). Biodiversity and
Protection in Diaoluoshan, Hainan. Guangdong Science and
Technology Press, Guangzhou. (in Chinese)[江海声 (2006). 海南吊罗山生物多样性及其保护. 广东科技出版社, 广州. ]
[本文引用:1]
Jiang YX, Lu JP (1991). Tropical Forest Ecosystem in Jiangfengling, Hainan Island
, China. Science Press, Beijing. (in Chinese)[蒋有绪, 卢俊培 (1991). 中国海南岛尖峰岭热带林生态系统. 科学出版社, 北京. ]
[本文引用:2]
Ke XD, Zhang L, Su ZR (2012).
Variation of soil organic carbon content along altitudinal gradient in subtropical montane forest in North Guangdong. , 28(2), 151-156. (in Chinese with English abstract)[柯娴氡, 张璐, 苏志尧 (2012).
粤北亚热带山地森林土壤有机碳沿海拔梯度的变化. , 28(2), 151-156. ]
[本文引用:1]
Lal R (2005).
Forest soils and
carbon sequestration. , 220, 242-258.
[本文引用:1]
Li FY, Li XM, Chen LY, Guo B, Qi ZP (2008).
The analysis of soil nutrient situations in Wanning of Hainan Province. Chinese Journal of Soil Science, 39, 1284-1287. (in Chinese with English abstract)[李福燕, 李许明, 陈柳燕, 郭彬, 漆智平 (2008).
海南万宁市土壤养分状况分析. 土壤通报, 39, 1284-1287. ]
[本文引用:1]
Li KR, Wang SQ, Cao MK (2003).
China vegetation and
soil carbon. Science in China (Series D), 33, 72-80. (in Chinese)[李克让, 王绍强, 曹明奎 (2003).
中国植被和土壤碳贮量. 中国科学(D辑), 33, 72-80. ]
[本文引用:1]
Li L, Zhou XY, Huang ZL, Wei SG, Shi JH (2006).
Study on the relationship between α diversity of plant community and
environment on Dinghushan. , 26, 2301-2307. (in Chinese with English abstract)[李林, 周小勇, 黄忠良, 魏识广, 史军辉 (2006).
鼎湖山植物群落α多样性与环境的关系. , 26, 2301-2307. ]
[本文引用:1]
Li YD, Chen BF, Zhou GY (2002). Research of Tropical Forests and
the Protection of Biodiversity in Hainan Island
, China. China Forestry Publishing House, Beijing. (in Chinese)[李意德, 陈步峰, 周光益 (2002). 中国海南岛热带森林及其生物多样性保护研究. 中国林业出版社, 北京. ]
[本文引用:1]
Li YS (2014).
Study on soil organic carbon storage and
carbon sequestration of main forest type in Jiangxi Province. Guangdong Agricultural Sciences, (14), 154-158. (in Chinese with English abstract)[李英升 (2014).
江西省典型森林类型土壤碳贮量及碳汇能力研究. 广东农业科学, (14), 154-158. ]
[本文引用:1]
Li ZH, Wang SH (2000).
Effects of soil bulk density on soil physical properties and
wheat growth. Chinese Journal of Soil Science, 31(2), 55-57. (in Chinese with English abstract)[李志洪, 王淑华 (2000).
土壤容重对土壤物理性状和小麦生长的影响. 土壤通报, 31(2), 55-57. ]
[本文引用:1]
Liu HN, Chen BL (2012).
Amphibian fauna of Hainan Yinggeling Nature Reserve, with new genus and
species records for Hainan Island
. Chinese Journal of Zoology, 47(1), 51-61. (in Chinese with English abstract)[刘惠宁, 陈辈乐 (2012).
海南鹦哥岭自然保护区两栖动物区系及属种海南新纪录. 动物学杂志, 47(1), 51-61. ]
[本文引用:1]
Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D (2012).
Storage, patterns, and
control of soil organic carbon and
nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters, 7, doi: .
[本文引用:1]
Long WY, Yang XB, Wu QS, Li DH, Guo T (2008).
Characteristics of Alsophila podophylla population and
its community in the tropical rainforest in Wuzhi Mountains. , 16, 83-90. (in Chinese with English abstract)[龙文兴, 杨小波, 吴庆书, 李东海, 郭涛 (2008).
五指山热带雨林黑桫椤种群及其所在群落特征. , 16, 83-90. ]
[本文引用:1]
Lu QL, Wang GB, Yang P, Zheng AB, Ruan HH (2012).
A review on the estimation methods of carbon pools of forest ecosystems. Journal of Nanjing Forestry University (Natural Sciences Edition), 36(5), 155-160. (in Chinese with English abstract)[路秋玲, 王国兵, 杨平, 郑阿宝, 阮宏华 (2012).
森林生态系统不同碳库碳储量估算方法的评价. 南京林业大学学报(自然科学版), 36(5), 155-160. ]
[本文引用:1]
Lu RK (2000). Soil Agricultural Chemistry Analysis Methods. China Agricultural Science and
Technology Press, Beijing. (in Chinese)[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京. ]
[本文引用:1]
Pan P, Gan WF, Ouyang YZ, Xiao X (2014).
Relationship between the contents of soil organic carbon, total nitrogen, total phosphorus and
soil organic carbon density of Pinus massoniana nature forest. Journal of Northwest Forestry University, 29(6), 1-5. (in Chinese with English abstract)[潘鹏, 甘文峰, 欧阳勋志, 肖欣 (2014).
马尾松天然林土壤碳氮磷含量与碳密度的关系. 西北林学院学报, 29(6), 1-5. ]
[本文引用:1]
Parker JL, Fernand ez IJ, Rustad LE, Norton SA (2001).
Effects of nitrogen enrichment, wildfire, and
harvesting on forest- soil carbon and
nitrogen. , 65, 1248-1255.
[本文引用:1]
Pielou EC (1975).
Ecological Diversity. John Wiley & Sons, New York.
[本文引用:1]
Roem W, Klees H, Berendse F (2002).
Effects of nutrient addition and
acidification on plant species diversity and
seed germination in heathland . , 39, 937-948.
[本文引用:1]
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA (2011).
Persistence of soil organic matter as an ecosystem property. , 478, 49-56.
[本文引用:1]
Shi LL (2012).
Study on the Spatial Heterogeneity of Soil Physical and
Chemical Properties of Primary Tropical Montane Rainforest in Jianfengling, Hainan Island
. Master degree dissertation,
Chinese Academy of Forestry, Beijing. 30-74. (in Chinese with English abstract)[时雷雷 (2012).
海南尖峰岭热带山地雨林原始林土壤理化性质空间异质性研究. 硕士论文, 中国林业科学研究院, 北京. 30-74. ]
[本文引用:1]
Shi RH, Bao SD, Qin HY (1996). Soil Agricultural Chemistry Analysis. 2nd edn. Agriculture Press, Beijing. (in Chinese)[史瑞和, 鲍士旦, 秦怀英 (1996). 土壤农化分析. 第二版. 农业出版社, 北京. ]
[本文引用:1]
Shi Z, Wang JS, He R, Fang YH, Xu ZK, Quan W, Zhang ZX, Ruan HH (2008).
Soil respiration and
its regulating factor along an elevation gradient in Wuyi Mountain of Southeast China. , 27, 563-568. (in Chinese with English abstract)[施政, 汪家社, 何容, 方燕鸿, 徐自坤, 权伟, 张增信, 阮宏华 (2008).
武夷山不同海拔土壤呼吸及其主要调控因子. , 27, 563-568. ]
[本文引用:1]
Tan LX, Fu CL, Pan SQ, Liu GB, Xie LS (2012).
Soil nutrient status at Zhayun, Qiongzhong County of Hainan Province. Chinese Journal of Tropical Crops, 33, 816-820. (in Chinese with English abstract)[谭丽霞, 符传良, 潘顺秋, 刘国彪, 谢良商 (2012).
海南琼中县什运乡土壤养分状况研究. 热带作物学报, 33, 816-820. ]
[本文引用:1]
Todd-Brown K, Rand erson J, Hopkins F, Arora V, Hajima T, Jones C, Shevliakova E, Tjiputra J, Volodin E, Wu T (2014).
Changes in soil organic carbon storage predicted by earth system models during the 21st century. , 11, 2341-2356.
[本文引用:1]
Wang CT, Long RJ, Liu W, Wang QL, Zhang L, Wu PF (2010).
Relationships between soil carbon distribution and
species diversity and
community biomass at different alpine meadows. Resources Science, 32, 2022-2029. (in Chinese with English abstract)[王长庭, 龙瑞军, 刘伟, 王启兰, 张莉, 吴鹏飞 (2010).
高寒草甸不同群落类型土壤碳分布与物种多样性、生物量关系. 资源科学, 32, 2022-2029. ]
[本文引用:1]
Wang HY, Lei XD, Lu YC, Zhou YH, He CL (2009).
Comparisons of soil chemical properties under four typical forest stand
s in Hainan Province. Forest Research, 22(1), 129-133. (in Chinese with English abstract)[王海燕, 雷相东, 陆元昌, 周燕华, 何楚林 (2009).
海南4种典型林分土壤化学性质比较研究. 林业科学研究, 22(1), 129-133. ]
[本文引用:1]
Wang SF, Wang XK, Ouyang ZY (2012).
Factors controlling soil organic carbon and
total nitrogen densities in the upstream watershed of Miyun Reservoir, north China. Environmental Science, 33, 946-951. (in Chinese with English abstract)[王淑芳, 王效科, 欧阳志云 (2012).
密云水库上游流域土壤有机碳和全氮密度影响因素研究. 环境科学, 33, 946-951. ]
[本文引用:2]
Wang SQ, Liu JY (2002).
Research status quo of impact factors of soil carbon storage. , 17, 528-534. (in Chinese with English abstract)[王绍强, 刘纪远 (2002).
土壤碳蓄积量变化的影响因素研究现状. , 17, 528-534. ]
[本文引用:1]
Wang SQ, Zhou CH, Li KR, Zhu SL, Huang FH (2000).
Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinca, 55, 533-544. (in Chinese with English abstract)[王绍强, 周成虎, 李克让, 朱松丽, 黄方红 (2000).
中国土壤有机碳库及空间分布特征分析. 地理学报, 55, 533-544. ]
[本文引用:1]
Wang SQ, Zhou CH, Liu JY, Li KR, Yang XM (2001).
Simulation analyses of terrestrial carbon cycle balance model in Northeast China. Acta Geographica Sinica, 56, 390-400. (in Chinese with English abstract)[王绍强, 周成虎, 刘纪远, 李克让, 杨晓梅 (2001).
东北地区陆地碳循环平衡模拟分析. 地理学报, 56, 390-400. ]
[本文引用:1]
Wang WJ, Zhang M, Liu FD, Zheng JW, Wang ZS, Zhang ST, Yang WJ, An SQ (2007).
Species association in tropical montane rain forest at two successional stages in Diaoluo Mountain of Hainan Island
. , 15, 257-263. (in Chinese with English abstract)[王文进, 张明, 刘福德, 郑建伟, 王中生, 张世挺, 杨文杰, 安树青 (2007).
海南岛吊罗山热带山地雨林两个演替阶段的种间联结性. , 15, 257-263. ]
[本文引用:1]
Wu ZM (1997).
A preliminary research on the carbon storage and
CO2 release of the tropical forest soils in Jianfengling, Hainan Island
. , 21, 416-423. (in Chinese with English abstract)[吴仲民 (1997).
尖峰岭热带森林土壤C储量和CO2排放量的初步研究. , 21, 416-423. ]
[本文引用:1]
Xiao DR, Tian K, Zhang QL (2008).
Relationship between plant diversity and
soil fertility in Napahai wetland
of Northwestern Yunnan Plateau. , 28, 3116-3124. (in Chinese with English abstract)[肖德荣, 田昆, 张利权 (2008).
滇西北高原纳帕海湿地植物多样性与土壤肥力的关系. , 28, 3116-3124. ]
[本文引用:1]
Xu H, Detto M, Fang S, Li Y, Zang R, Liu S (2015).
Habitat hotspots of common and
rare tropical species along climatic and
edaphic gradients. , 103, 1325-1333.
[本文引用:1]
Xu X, Chen YQ, Wang JS, Fang YH, Quan W, Ruan HH, Xu ZK (2008).
Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain. , 19, 539-544. (in Chinese with English abstract)[徐侠, 陈月琴, 汪家社, 方燕鸿, 权伟, 阮宏华, 徐自坤 (2008).
武夷山不同海拔高度土壤活性有机碳变化. , 19, 539-544. ]
[本文引用:1]
Xu XL, Cao MK, Li KR (2007).
Temporal-spatial dynamics of carbon storage of forest vegetation in China. , 26(6), 1-10. (in Chinese with English abstract)[徐新良, 曹明奎, 李克让 (2007).
中国森林生态系统植被碳储量时空动态变化研究. , 26(6), 1-10. ]
[本文引用:1]
Xu Y, Zhang FR, Duan ZQ, Zhang L, Kong XB (2005).
Calculation method for density and
storage of soil organic carbon. Chinese Journal of Soil Science, 36, 836-839. (in Chinese with English abstract)[徐艳, 张凤荣, 段增强, 张琳, 孔祥斌 (2005).
区域土壤有机碳密度及碳储量计算方法探讨. 土壤通报, 36, 836-839. ]
[本文引用:1]
Yao XL, Cheng YS (1986). Soil Physics. Agricultural Press, Beijing. (in Chinese)[姚贤良, 程云生 (1986). 土壤物理学. 农业出版社, 北京. ]
[本文引用:1]
Yu DS, Shi XZ, Sun WX, Wang HJ (2005).
Estimation of China soil organic carbon storage and
density based on 1: 1000000 soil database. , 16, 2279-2283. (in Chinese with English abstract)[于东升, 史学正, 孙维侠, 王洪杰 (2005).
基于1: 100万土壤数据库的中国土壤有机碳密度及储量研究. , 16, 2279-2283. ]
[本文引用:1]
Zang RG (2010). Main Function Group of Conservation and
Restoration Ecology Basis in Tropical Virgin Forests of Hainan Island
. Science Press, Beijing. (in Chinese)[臧润国 (2010). 海南岛热带天然林主要功能群保护与恢复的生态学基础. 科学出版社, 北京. ]
[本文引用:1]
Zhan ZY, Li XG, Zhang DG, Wang ZF (2005).
Effects of land
use on organic C concentration and
structural properties in alpine grassland
soil. Acta Pedologica Sinica, 42, 777-782. (in Chinese with English abstract)[展争艳, 李小刚, 张德罡, 王哲锋 (2005).
利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响. 土壤学报, 42, 777-782. ]
[本文引用:1]
Zhang L (2013).
Soil Organic Carbon in Mangrove Forests and
Its Relationship with Soil Factor in Qinglangang, Hainan. Master degree dissertation,
Henan University of Science and
Technology, Luoyang. 13-32. (in Chinese with English abstract)[张莉 (2013).
海南清澜港红树林土壤有机碳及其与土壤因子关系研究. 硕士论文, 河南科技大学, 洛阳. 13-32. ]
[本文引用:1]
Zhang XL, Wang S, Wang X, Wen GS, Liu HW, Li JL (2014).
Soil organic carbon storage of Diaoluoshan Natural Reserve in Hainan. Chinese Journal of Tropical Crops, 35, 362-368. (in Chinese with English abstract)[张晓琳, 王帅, 王旭, 文关四, 刘海伟, 李佳灵 (2014).
海南吊罗山自然保护区土壤有机碳贮量研究. 热带作物学报, 35, 362-368. ]
[本文引用:1]
Zhao AJ, Hu TX, Chen XH (2009).
Influence of subtropical forest ecosystems types on spatial heterogeneity of surface soil organic carbon. , 24, 1748-1756. (in Chinese with English abstract)[赵安玖, 胡庭兴, 陈小红 (2009).
森林类型对土壤表层有机碳空间异质性的影响. , 24, 1748-1756. ]
[本文引用:1]
Zhao GS, Li YS, Gao J, Li FD (2014).
Storage and
spatial distribution of soils carbon in lower reaches of the Yellow River irrigation district. Ecology and
Environmental Sciences, 23, 1113-1120. (in Chinese with English abstract)[赵广帅, 李运生, 高静, 李发东 (2014).
黄河下游灌区土壤碳储量及碳密度分布. 生态环境学报, 23, 1113-1120. ]
[本文引用:1]
Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006).
Old-growth forests can accumulate carbon in soils. , 314, 1417-1417.
[本文引用:1]
Zhou YR, Yu ZL, Zhao SD (2000).
Carbon storage and
budget of major Chinese forest types. , 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000).
我国主要森林生态系统碳贮量和碳平衡. , 24, 518-522. ]
[本文引用:1]
An SQ, Zhu XL, Wang ZF, Li GQ, Chen XL (1999).
The plant species diversity in a tropical montane rain forest on Wuzhi Mountain, Hainan. , 19, 803-809. (in Chinese with English abstract)[安树青, 朱学雷, 王峥峰, 李国旗, 陈兴龙 (1999).
海南五指山热带山地雨林植物物种多样性研究. , 19, 803-809. ]
The tropical montane rain foreston Wuzhi Mountain,Hainan has abundant species.In a 1hm 2 there are 54 families,100 genus,177 plant species and 1337 individuals.The result of a floristic geographical study shows the major types of genus are tropical components(89.0%).It fully reflects the tropical characteristics of the montane rain forest on Wuzhi Mountain,Hainan.The result of diversity indices shows that in plot 1,Margalef index is 17.822,Shannon Wiener index is 5.900,evenness is 0.859,Simpson index is 0...
五指山热带山地雨林的物种种类十分丰富,在1hm 2样地中共出现54个科,100个属的乔木树种177种,1337个个体。区系地理分析表明属的分布区类型以热带分布型成分占优,为89.0% ,充分体现了五指山山地雨林的热带性质。多样性指数分析结果为:样地1 Margalef指数17.822,Shannon-Wiener 指数5.900,均匀度0.859,Sim pson 指数0.028,均匀度3.866;样地2 Margalef指数17.381,Shannon-Wiener指数5.621,均匀度0.823,Sim pson 指数0.050,均匀度6.775,表明五指山热带山地雨林具有较高的多样性和均匀度,且低海拔的样地较高海拔的样地多样性高。在五指山热带山地雨林中共有单个体种44种,双个体种25种,分别占物种总数的24.9% 和14.1% ,这些低密度的或小种群的偶见种相对群落的主要种来说,更容易受到各种胁迫的影响而在群落中绝灭,从而使群落的物种多样性降低。
... 安树青等, 1999 ...
... m-2 (Batjes, 1996), 但小于东北地区平均土壤碳密度21 ...
... m-2) (蔡会德等, 2014)、美国大陆(10 ...
... 在高寒草地(杜慧平, 2007)、高寒牧区(土壤活性有机碳) (展争艳等, 2005)、云南热区4种林分(陈伟等, 2013)、密云水库上游流域(王淑芳, 2012)等地土壤有机碳密度与土壤容重负相关关系 ...
Cui HX, Xiao WF, Pan L, Huang ZL, Pang HD (2012).
Characteristics of soil carbon storage of Abies fargesii forest in Shennongjia. , 48(11), 107-111. (in Chinese with English abstract)[崔鸿侠, 肖文发, 潘磊, 黄志霖, 王晓荣, 庞宏东 (2012).
神农架巴山冷杉林土壤碳储量特征. , 48(11), 107-111. ]
The natural forest, secondary forest and plantation plots of Abies fargesii were selected in the Shennongjia nature reserve, and soil carbon storage of the three forest types was analyzed. The result showed litter storage of the natural forest, secondary forest and plantation was 97.15 t&hm -2 , 53.03 t&hm -2 and 83.22 t&hm -2 , respectively. The content of the soil organic carbon gradually declined with the soil depth from 0 to 60 cm, and the mean soil organic carbon storage was 53.31 g&kg -1 for natural forest > 48.66 g&kg -1 for secondary forest > 47.62 g&kg -1 for plantation. The total soil organic carbon storage was 271.93 t&hm -2 for natural forest > 219.80 t&hm -2 for plantation > 218.29 t&hm -2 for secondary forest. There was a negative significant correlation between total soil organic carbon storage and Shannon-Wiener diversity index of the shrub and herb layers, and the soil carbon storage from 0 to 40 cm layers was significantly positive correlated with the litter storage.
1. Institute of Forest Ecology, Environment and Protection, CAF Beijing . Hubei Academy of Forestry Wuhan 430075
... m-2)的森林土壤有机碳密度(Dixon et al ...
... 在高寒草地(杜慧平, 2007)、高寒牧区(土壤活性有机碳) (展争艳等, 2005)、云南热区4种林分(陈伟等, 2013)、密云水库上游流域(王淑芳, 2012)等地土壤有机碳密度与土壤容重负相关关系 ...
Du YX, Wu CJ, Zhou SX, Huang L, Han SM, Xu XF, Ding Y (2011).
Forest soil organic carbon density and
its distribution characteristics along an altitudinal gradient in Lushan Mountains of China. , 22, 1675-1681. (in Chinese with English abstract)[杜有新, 吴从建, 周赛霞, 黄良, 韩世明, 徐雪峰, 丁园 (2011).
庐山不同海拔森林土壤有机碳密度及分布特征. , 22, 1675-1681. ]
To understand the spatial distribution characteristics of organic carbon in northern subtropical forest soils along an altitudinal gradient in Lushan Mountains of China, six and five sampling plots with a 200-m interval of elevation and covered by different vegetation types were installed on the southern and&northern slopes, respectively in July-August in 2010 to collect soil profiles,&with the soil thickness, bulk density, organic carbon content, and organic carbon density of 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm, and >40 cm layers measured. The soil organic carbon density was significantly affected by altitude and slope. On northern slope, soil organic carbon content increased with increasing altitude, and had significant negative correlations with soil bulk density and pH value. On southern slope, soil organic carbon content had no obvious variation pattern along the altitudinal gradient and had less correlation with soil bulk density and pH value, but soil organic carbon density decreased with increasing soil depth. The soil organic carbon density on northern and southern slopes was within the range of 7.07-10.34 kg&m -2 and 6.03-12.89 kg & m -2 , respectively. The larger variation of soil organic carbon density along altitudinal gradient and soil depth on southern slope suggested that the destruction of original vegetation and the establishment of forest plantation could be one of the important factors affecting the spatial distribution of soil organic carbon.
1Lushan Botanical Garden, Jiangxi Province &Chinese Academy of Sciences, Lushan 332900, Jiangxi, C 2College of Envioronmental Chemistry Engineering,Nanchang Hang Kong University, Nanchang 330063, C3Jiujiang Forestry Bureau, Jiujiang 332000, Jiangxi, China
为阐明地处中亚热带北部的庐山森林土壤有机碳沿海拔梯度的分布特征,月,分别在庐山的南、北坡按200 m的高差选择6个和5个不同海拔采样点,分层?(0~10、10~20、20~30、30~40和>40 cm)采集土样,测定土壤容重、有机碳含量及有机碳密度.结果表明:海拔和坡向显著影响森林土壤有机碳密度.在北坡,随海拔升高, 土壤有机碳呈逐渐增加趋势,土壤有机碳含量与土壤容重和pH值呈显著负相关关系;在南坡则没有明显规律.随土层加深,土壤有机碳逐渐下降.北坡和南坡土壤有机碳密度分别为7.07~10.34 kg&m -2 ?和6.03~12.89 kg&m -2 .南坡土壤有机碳密度随海拔梯度和土层深度变化的变异性较大,原始植被的破坏和人工林的建立可能是影响土壤有机碳空间分布的重要因素之一.
... 在老哈河流域(郭月峰等, 2014)、密云水库上游流域(王淑芳等, 2012)、粤北亚热带山地森林(柯娴氡等, 2012)、庐山(杜有新等, 2011)、祁连山北坡垂直带山地森林(胡启武等, 2006)和其他地方(徐侠等, 2008 ...
... 海拔升高导致气温降低, 蒸发量减少, 动植物残体分解缓慢且大部分沉积在土壤中, 使土壤有机碳的释放降低(杜有新等, 2011) ...
... 109 t) (FAO, 2010), 每年固定的碳约占整个陆地生态系统的2/3 (Fang #cod#x00026 ...
Fang YT, Mo JM, Browns S, Zhou GY, Zhang QM, Li DJ (2004).
Storage and
distribution of soil organic carbon in Dinghushan Biosphere Reserve. , 24, 135-142. (in Chinese with English abstract)[方运霆, 莫江明, Brown S, 周国逸, 张倩媚, 李德军 (2004).
鼎湖山自然保护区土壤有机碳贮量和分配特征. , 24, 135-142. ]
Land-use change that influences soil carbon storage and release within the tropics can have large implications for global carbon cycling. Changes in soil carbon following land-use change have become an international policy concern in terms of both sustained production at a local or regional scale, and the global consequences relating to increased emissions of CO_2 from terrestrial systems. There are eight types of vegetation in Dinghushan Biosphere Reserve (DHSBR), Guangdong province, and these vegetations ...
基于 6 1个土壤剖面的数据 ,分析了鼎湖山自然保护区 4种自然植被类型 (沟谷雨林、季风常绿阔叶林、山地常绿阔叶林和山地灌木草丛 )和 4种次生植被类型 (马尾松针叶林、针阔混交林、次生季风常绿阔叶林和常绿灌丛 )的土壤有机碳贮量及其分配特征。结果如下 :(1)各植被类型土壤有机碳含量随深度增加而减少 ,但植被类型不同其减少程度不同。除 >4 0 cm土层外 ,自然植被类型的土壤有机碳含量明显高于次生植被类型。 (2 )土壤碳密度和土壤有机碳含量一样随深度增加而减少。两大植被类型间比较 ,除山地灌木草丛 >4 0 cm土层外 ,自然植被类型各个土层土壤碳密度都高于所有的次生植被类型对应的碳密度。对于整个土层而言 ,各植被类型土壤碳密度在 30 .9~ 12 7.9t/ hm2间 ,总平均为 73.9t/ hm2。 (3)各植被类型的土壤厚度平均为36 .7~ 73.3cm,总平均为 5 6 .4 cm。除了山地常绿阔叶林外 ,土壤厚度基本上沿海拔高度增加而减少。 (4)保护区各植被类型总面积为 10 2 8.4 hm2 ,土壤总碳贮量为 72 2 87.0 t,其中 0~ 10、10~ 2 0、2 0~ 40cm和>40cm四个土层分别占32.0%、20.6%、25.8%和21.6%。自然植被土壤碳贮量在表层(0~20cm)的比重比次生植被的高。所有的植被类型中,混交林碳贮量贡献最大、季风常绿阔叶林次之。自然植被类型土壤在碳贮存方面发挥积极的作用。(5)通过比较,鼎湖山保护区土壤碳密度整个较低,表层土壤碳贮量贡献较大。分析表明人为干扰是制约土壤碳贮存量大小的重要因素。
... m-2 (方运霆等, 2004)、中国土壤平均碳密度9 ...
... 99 cm), 降雨量也较海南岛分配均匀, 全年高温高湿, 不利于有机碳的积累, 且人为收割林下层植物和凋落物造成土壤碳损失(方运霆等, 2004) ...
... 109 t) (FAO, 2010), 每年固定的碳约占整个陆地生态系统的2/3 (Fang #cod#x00026 ...
... Fu et al ...
Geng GP, Gao Peng, Lv SQ, Zhang J (2011).
Spatial distribution of soil organic matter and
total nitrogen in Matiyu small watershed in hilly area of middle southern Shand
ong Province. , 9(6), 99-105. (in Chinese with English abstract)[耿广坡, 高鹏, 吕圣桥, 张杰 (2011).
鲁中南山区马蹄峪小流域土壤有机质和全氮空间分布特征. , 9(6), 99-105. ]
By analyzing the representativeness and operability of land use and sample points in general, samples from 97 sites (0-20cm) were collected during October 2010 in Matiyu small watershed in hilly area of middle southern Shandong Province. By employing regression-kriging methods and ‘3S’ technology, the spatial distribution characteristics of soil organic matter and total nitrogen were studied. Results showed: 1) The average values of surface soil organic matter and total nitrogen mass fraction were 20.45 and 1.18g/kg respectively, and the coefficients of variation were 27.68% and 27.97% respectively. Environmental factors included elevation, slope, aspect and NDVI had significant correlations with soil organic matter and total nitrogen, and elevation and cosine value of aspect performed the best among the selected factors. Moreover, the prediction accuracy of regression-kriging was better than that of ordinary kriging. 2) Semivariogram test showed that both regression values of soil organic matter and total nitrogen had strong spatial autocorrelation with the sill values 7.3% and 17.50% respectively. Both residual values of soil organic matter and total nitrogen had medium spatial autocorrelation with the sill values 33.93% and 25.58% respectively. 3) The distribution map of regression-kriging showed that both soil organic matter and total nitrogen mass fraction decreased from the southeast to the northwest, which was similar to the trend of DEM in Matiyu small watershed. The pattern of soil organic matter mass fraction could be ordered as Quercus acutissima plantation> Pinus thunbergii plantation>Vegetable field> Zea mays field> Castanea mollissima plantation>Grassland. The soil total nitrogen mass fraction could be ordered as Quercus acutissima plantation>Vegetable field> Pinus thunbergii plantation> Zea mays field> Castanea mollissima plantation>Grassland. At different elevations, the higher the elevation, the larger the soil organic matter and total nitrogen mass fraction, while at different aspects, the pattern of soil organic matter and total nitrogen mass fraction could be ordered as shady slope>half-sunny slope>sunny slope.
Forestry College of Shandong Agricultural University, Taishan Forest Ecosystem Research Station, Shandong Province Key Laboratory of Soil Erosion and Ecological Restoration, 271018, Tai'an, Shandong, China
以鲁中南山区马蹄峪小流域土壤为对象,综合考虑土地利用和采样点的代表性及可操作性,采集表层(0~20cm)土壤样品97个,利用回归克里格方法和“3S”技术,分析小流域土壤有机质和全氮的空间分布特征。结果表明:1)马蹄峪小流域表层土壤有机质和全氮质量分数平均值分别为20.45和1.18g/kg,变异系数分别为27.68%和27.97%,土壤有机质和全氮与环境因子中的高程、坡度、坡向及归一化植被指数相关性较高,而高程及坡向余弦值是回归预测模型所选因子中最优的,从对预测准确性分析来看,回归克里格插值预测结果精度优于普通克里格插值预测结果;2)半方差函数模型中,土壤有机质和全氮质量分数回归值的空间自相关性很强,基台效应值分别为7.3%和17.50%,而土壤有机质和全氮质量分数残差值的空间自相关性为中等,基台效应值分别为33.93%和25.58%;3)土壤有机质和全氮质量分数在空间分布图中均呈现从东南向西北方向逐渐降低的趋势,土壤有机质质量分数在不同土地利用方式下表现为麻栎林地>黑松林地>蔬菜地>玉米地>板栗林地>荒草地的格局,而全氮质量分数则表现出麻栎林地>蔬菜地>黑松林地>玉米地>板栗林地>荒草地的格局,土壤有机质和全氮质量分数在不同高程下整体呈现高程越高,土壤有机质和全氮质量分数越大的趋势,土壤有机质和全氮质量分数在不同坡向下由高到低则均呈现阴坡>半阳坡>阳坡的格局。
... 耿广坡等, 2011)的研究土壤有机碳随海拔上升也递增 ...
... 另外, 当土壤中养分丰富时, 一些物种对丰富的养分能很快地吸收和利用, 并且将形成占优势的区域而排除其他物种进入(Gough et al ...
... 在老哈河流域(郭月峰等, 2014)、密云水库上游流域(王淑芳等, 2012)、粤北亚热带山地森林(柯娴氡等, 2012)、庐山(杜有新等, 2011)、祁连山北坡垂直带山地森林(胡启武等, 2006)和其他地方(徐侠等, 2008 ...
Hao QY, Liu Q, Wang SQ, Zhong QX, Wang YC, Ruan CL, Yan TL, Du S, Huang YC (2013).
Biomass of forest communities at different altitude regions in Yinggeling montane tropical rainforest, Hainan Island
. , 21, 529-537. (in Chinese with English abstract)[郝清玉, 刘强, 王士泉, 钟琼芯, 王亚陈, 阮长林, 严廷良, 杜爽, 黄奕财 (2013).
鹦哥岭山地雨林不同海拔区森林群落的生物量研究. , 21, 529-537. ]
In order to understand the biomass dynamic changes in tropical montane rainforest with selective harvesting at different altitudes, fifty permanent plots of 10 m×10 m were established to investigate the biomass of forest communities in Yinggeling montane rainforest at each area of high (1063 m), middle (899 m) and low (473 m) altitudes. The results showed that the biomass of above-ground and tree layer in Yinggeling montane rainforest was only 152.6 t hm -2 and 142.6 t hm -2 , respectively, which was far less than that in natural forests of other areas in Hainan Island. The tree layer biomass of sample plots at high altitude was higher than that at middle and low altitude, amounting to 197.6 t hm -2 , 112.2 t hm -2 and 117.8 t hm -2 , respectively. The ratio of biomass allocation was in the order of tree layer (94.22%) > snags & fallen log (2.9%) > litter (2.88%), while that of tree layer was in descending order: trunks (72.63%) > branches (15.35%) > barks (9.23%) > leaves (2.79%). Due to selective harvesting, number of large and extra large diameter trees was small, therefore, the ratio of biomass allocation in small diameter trees (5-19.9 cm), middle diameter trees (20-35.9 cm), large diameter trees (36-47.9 cm) and extra large diameter trees (≥ 48 cm) was accounting for 35.89%, 26.24%, 16.01% and 21.86%, respectively. After over 30 year's natural restoration, Yinggeling montane rainforest was still in the midsuccessional stage, which indicated that it would have a great potential on forest carbon sequestration in the future.
为了解海南岛不同海拔热带山地雨林生态系统的生物量现状,在鹦哥岭山地雨林择伐林中按高(1063 m)、中(899 m)、低(473 m)等3 个海拔区分别设立50 个10 m×10 m 的固定样方,对森林群落的生物量进行了分析研究。结果表明,鹦哥岭山地雨林的生物量较低,地上部分的生物量仅为152.6 t hm -2 ,乔木层生物量为142.6 t hm -2 ;乔木层的生物量在高海拔区明显高于中、低海拔区,分别为197.6 t hm -2 、 112.2 t hm -2 和117.8 t hm -2 ;群落生物量的大小依次是乔木层>枯倒木>凋落物,分配比例分别为94.22%、 2.90% 和2.88%;其中乔木层的生物量以树干>树枝>树皮>树叶,分配比例分别为72.63%、 15.35%、 9.23%和2.79%。因经过择伐,群落中大径级和特大径级木较少,各径级生物量比例为:小径木(5~19.9 cm) 35.89%、中径木(20~35.9 cm) 26.24%、大径木(36~47.9 cm) 16.01% 和特大径木(≥48 cm) 21.86%。可见,鹦哥岭山地雨林经过30 多年的恢复,仍然处于演替的中期阶段,其固碳潜力仍巨大。
... 郝清玉等, 2013 ...
... 在老哈河流域(郭月峰等, 2014)、密云水库上游流域(王淑芳等, 2012)、粤北亚热带山地森林(柯娴氡等, 2012)、庐山(杜有新等, 2011)、祁连山北坡垂直带山地森林(胡启武等, 2006)和其他地方(徐侠等, 2008 ...
... 根据研究区土壤质地(黄成敏和龚子同, 2000)及土壤石质度级别与#cod#x003b4 ...
Huang YF, Ding Y, Zang RG, Li XC, Zhou ZC, Han WT (2012).
Spatial pattern of trees in tropical lowland
rain forest in Bawangling of Hainan Island
, China. , 36, 269-280. (in Chinese with English abstract)[黄运峰, 丁易, 臧润国, 李小成, 邹正冲, 韩文涛 (2012).
海南岛霸王岭热带低地雨林树木的空间格局. , 36, 269-280. ]
Aims Understanding processes underlying spatial distribution of tree species is fundamental to the study of species coexistence and diversity. Our objective was to determine the spatial structure and identify the processes that may generate spatial patterns of trees in a tropical lowland rain forest community on Hainan Island of South China. Methods Based on four models of point pattern analysis (homogenous Poisson process, inhomogenous Poisson process, homogenous Thomas process and inhomogenous Thomas process), we evaluated the potential contribution of habitat heterogeneity and dispersal limitation to the formation of spatial patterns of tree species in two 1-hm 2 stem-mapped forest dynamic plots. The relative importance of each process was assessed at six different spatial scales ( Important findings All stems combined revealed a strong aggregation at short distance (&2 m), and the degree of aggregation decreased with increasing distance. Among the four models simulating tree distribution and patterning, the homogeneous Thomas process was the best-fit model. This result suggested that spatial patterns of tree species in tropical lowland rain forest might be formed by dispersal limitation. The homogeneous Poisson process that models the effect of spatial complete randomness was the second-best model. The inhomogeneous Thomas process and inhomogeneous Poisson process were equally important to forming spati they simulated the joint effects of habitat associations and dispersal limitation and modeled heterogeneity, respectively. The proportion of best-fit models differed across different scales. The dispersal limitation was a most important mechanism in spatial patterning of tree species at most scales, while complete randomness process was second in importance. The joint effects of habitat associations and dispersal limitation mainly influenced tree distribution at small scales (0&5 m). However, habitat heterogeneity only affected the distribution at larger scales (15&25 m).
1 Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of State Forestry Administration, Beijing 100091, C
2 Administration Bureau of Hainan Bawangling National Natural Reserve, Changjiang, Hainan 572722, China
树木空间格局及其形成过程是物种共存及生物多样性维持机制研究的一个重要方面。该文以海南岛两个1 hm 2 的典型热带低地雨林老龄林森林动态样地为基础, 通过4个点格局模型(均质Poisson过程、异质Poisson过程、均质Thomas过程和异质Thomas过程)模拟扩散限制和生境异质性作用对树木空间分布格局的影响, 并分析不同空间尺度下(
... 黄运峰等, 2012 ...
... kg-1 (黄永涛, 2013), 尖峰岭热带山地雨林原始森林0-10、10-30、30-60 cm土壤有机质分别为(57 ...
... 江海声, 2006 ...
... 4%, 是受全球气候变化影响的敏感区域, 在生态环境建设中起举足轻重的作用(蒋有绪和卢俊培, 1991) ...
... 各研究点基本情况见表1 (蒋有绪和卢俊培, 1991 ...
Ke XD, Zhang L, Su ZR (2012).
Variation of soil organic carbon content along altitudinal gradient in subtropical montane forest in North Guangdong. , 28(2), 151-156. (in Chinese with English abstract)[柯娴氡, 张璐, 苏志尧 (2012).
粤北亚热带山地森林土壤有机碳沿海拔梯度的变化. , 28(2), 151-156. ]
To explore distribution pattern of soil organic carbon(SOC)contents along altitudinal gradient and its relationships with vegetation type and litter thickness,17 transects(10m&120m each)were set up,one in every 100m in altitude from 300 m to 1900 m along a slope of the Shikengkong Mountain,the highest peak of Guangdong in the Nanling National Nature Reserve and soil litter samples collected in all the transects for analysis.Results show that SOC contents in the 0-20 cm and >20-40 cm soil layers varied sharply( P P <0.01).Generally SOC content increased with elevation,and thickness of the litter layer showed significant effect only on the SOC content in the 0-20cm soil layer.Obviously elevation is the leading factor that determines distribution of SOC contents,and type of the forest stand is another that affects organic carbon content in the topsoil.All these factors reflect change

我要回帖

更多关于 大神石头那一关怎么过 的文章

 

随机推荐